Код презентации скопируйте его
Курсовая работа учителя математики школы №13 с углубленным изучением английского языка Виноградовой Ольги Васильевны.
ОБЪЁМ ПРИЗМЫ. ПЛАН ТЕМЫ: I. Понятие объема. II. Основные свойства объёмов. III. Объём произвольной призмы.
Объем каждого тела выражается положительным числом, которое показывает, сколько единиц измерения объемов и частей единицы содержится в данном теле. Понятие объема
Чтобы найти объём многогранника, нужно разбить его на кубы с ребром, равным единице измерения. V=12ед.3
Общие свойства объемов тел: I. Равные тела имеют равные объемы, при перемещении тела его объем не изменяется. II. Если тело разбить на части, являющиеся простыми телами, то объем тела равен сумме объемов этих частей.
Равные тела имеют равные объемы, при перемещении тела его объем не изменяется; Рассмотрим первое свойство. V1 V2 V1= V2
Рассмотрим второе свойство. Если тело разбить на части, являющиеся простыми телами, то объем тела равен сумме объемов всех частей.
Объем прямой треугольной призмы, в основании которой лежит прямоугольный треугольник, равен произведению площади основания на высоту. V=abc V=abc :2 :2
Рассмотрим произвольную прямую треугольную призму ABCA1B1C1. Если DABC не прямоугольный, то его можно разбить на два прямоугольных треугольника ADC и BDC. A D B A1 D1 B1 C1 C Как же найти объём произвольной призмы? V=S·h S- площадь основания; ·h-высота призмы