Проект по теме: “Трисекция угла” Выполнила: ученица 8 класса В МОУ СОШ № 13 г.Тамбова Бакушкина Маргарита Александровна Учитель: Кирина Елена Викторовна Адрес: 392032 г.Тамбов Б.-Энтузиастов, 30 В кв. 24 Д.т. (4752) 45 54 94 e-mail: elkirina@rambler.ru Математика и проектирование
Cлайд 2
Цели: познакомиться с историей развития решения задачи деления угла на три равные части; поиск решения задачи наиболее удобным способом; сконструировать циркуль – трисектор.
Cлайд 3
Краткое содержание: Вступление; Постановка проблемы; Исторические сведения; Методы доказательства; Решение задачи о трисекции угла циркулем и линейкой; Простейший трисектор; Циркуль- трисектор; Практическое применение циркуля – трисектора; Вывод; Литература.
Cлайд 4
Вступление. Задачи на геометрические построения – одни из самых популярных в школьной математике. История геометрических построений насчитывает несколько тысяч лет, и уже древние достигли здесь большого искусства. Нам известны 3 знаменитые задачи древности: о квадратуре круга, трисекции угла и удвоении куба. Лишь в конце прошлого века была доказана их неразрешимость. В своей работе я рассмотрела задачу о трисекции угла. Она возникла из потребностей архитектуры и строительной техники. При составлении рабочих чертежей, разного рода украшений, многогранных колоннад, при строительстве, внутренней и внешней отделки храмов, надгробных памятников древние инженеры, художники встретились с необходимостью уметь делить окружность на три равные части, а это часто вызывало затруднения.
Cлайд 5
Постановка проблемы. С глубокой древности известна одна из знаменитых задач древности – задача о трисекции угла. Она сыграла важную роль в истории математики. В конце концов было доказано, что эту задачу невозможно решить, пользуясь только циркулем и линейкой. Но уже сама постановка задачи - “доказать неразрешимость” – была смелым шагом вперёд. Вместе с тем предлагалось множество решений при помощи нетрадиционных инструментов. Всё это привело к возникновению и развитию совершенно новых идей в геометрии и алгебре. Немало преуспели в нестандартных и различных приближённых решениях любители математики. Задача кажется доступной любому: вводит в заблуждение простая формулировка.
Cлайд 6
Исторические сведения. Платон, живший в 428 – 328 годах до нашей эры, считается одним из величайших философов Греции. Геометрия ко времени Платона уже была очень развита. Было решено много весьма и весьма сложных задач, доказаны сложнейшие теоремы. В конце прошлого века было доказано, что в такой постановке данная задача не может быть решена, хотя, если использовать другие геометрические инструменты или использовать при построении геометрические места точек, отличные от прямой, либо дуги окружности. То эта задача легко решается. Однако принятые у греков правила игры не позволяли пользоваться при решении задачи ничем, кроме циркуля и линейки. Платон даже обосновал это ссылкой на авторитет богов. Так что проблема решена не была, но по ходу дела геометрия была основательно разработана. Платон.
Cлайд 7
Архимед. Архимед (?287-212 гг. до нашей эры) родился в городе Сиракузы на острове Сицилия. Он автор многочисленных открытий, гениальный изобретатель, известный во всем греческом мире благодаря конструкции многих механизмов: машины для орошения полей, водоподъемного механизма, системы рычагов, блоков для поднятия больших тяжестей (кранов), военных метательных аппаратов. Он соорудил систему блоков, с помощью которой один человек смог спустить на воду огромный корабль "Сиракосия". Крылатыми стали произнесенные тогда слова Архимеда: "Дайте мне точку опоры, и я поверну Землю". Архимед погиб от меча римского легионера. На своей могильной плите Архимед завещал выгравировать шар и цилиндр - символы его геометрических открытий.
Cлайд 8
Методы доказательства. Существуют различные способы построения трисектрисы угла: При помощи циркуля и линейки без засечек (трисекция угла в 900, 450, 22,50,... p /2n, где nI N (все эти углы образуют бесконечно малую геометрическую прогрессию со знаменателем q =1/2),трисекция угла в 1800,3600). Квадратрисса Гиппея; Конхоида Никомеда; Спираль Архимеда; С помощью простейшего трисектора; При помощи циркуля-трисектора.
Cлайд 9
Решение задачи о трисекции угла циркулем и линейкой.
Cлайд 10
Простейший трисектор. На сегодняшний день придумано много механических способов для построения трисектрисы угла. Такие приборы называются трисекторами. Простейший трисектор можно легко изготовить из плотной бумаги, картона или тонкой жести. Он будет служить подсобным чертежным инструментом. На чертеже трисектор изображен в натуральную величину (заштрихованная фигура). Примыкающая к полукругу полоска AB равна длине радиуса полукруга. Край полоски BD составляет прямой угол с AC; он касается полукруга в точке B; длина полоски BD произвольная. На этом же рисунке показано применение трисектора.
Cлайд 11
Такой способ трисекции угла не является чисто геометрическим; его можно назвать механическим.
Cлайд 12
Циркуль - трисектор. Попытки расширить инструментарий оказали большое влияние на древнегреческую математику, привели и к первым исследованиям конических сечений, и к исследованию сложных кривых, и к построению интересных инструментов. Рассмотрим шарнирный механизм, являющийся параллелограммом с двумя закрепленными шарнирами. Из курса школьной математики нам известно, что противоположные углы параллелограмма равны. Это верно для любого параллелограмма, а значит и для любого изгибания нашего механизма. А для любого ли изгибания? У нашей системы есть одна особая точка — когда все звенья легли на одну прямую. Из этой точки бифуркации механизм может выйти, снова став параллелограммом, а может перейти в фигуру, которая называется антипараллелограмм. Противоположные углы параллелограмма равны. Точка бифуркации. Антипараллелограмм. Равенство углов.
Cлайд 13
От параллелограмма антипараллелограмм унаследовал то, что две противоположные стороны равны между собой, и две накрест лежащие стороны также равны между собой. Оказывается, у нашей фигуры есть и соотношение на углы — у антипараллелограмма они попарно равны! Прибавим к нашему антипараллелограмму более маленький, но подобный первому. У них есть один общий угол, а значит углы при красном шарнире — тоже равны. Вытягивая направляющие прямые, получаем плоский шарнирный механизм, который можно применять для построения биссектрисы любого угла. Второй антипараллелограмм. Равенство углов. Бисектор.
Cлайд 14
Можно прибавить еще один подобный антипараллелограмм. По тем же соображениям его угол при красном шарнире будет равен уже двум имеющимся. Получившийся плоский шарнирный механизм является трисектором углов — решает задачу о делении произвольного угла на три равные части! Однако, очевидно, использованный алгоритм построения можно продолжать и дальше, получая шарнирные механизмы, точно делящие произвольный угол на любое наперед заданное число частей. Третий антипараллелограмм. Равенство углов. Трисектор.
Cлайд 15
Практическое применение циркуля- трисектора.
Cлайд 16
Вывод При выяснении возможности планиметрической задачи на построение пользуются следующим критерием: построение отрезка циркулем и линейкой возможно тогда и только тогда, когда его длина выражается через длины данных отрезков в виде конечной комбинации четырёх арифметических действий и извлечения арифметического квадратного корня. С помощью этого критерия доказано, что знаменитая задача древности – трисекция угла- неразрешима с помощью циркуля и линейки. Работая над проектом я исследовала способы построения трисектрисы угла и сконструировала простейший трисектор.
Cлайд 17
Литература Перельман Я.И. «Занимательная геометрия» Государственное издательство технико-теоретической литературы Москва-1950-Ленинград Прасолов В.В. «Популярные лекции по математике. Три классические задачи на построение» М.,»Наука», 1992 Энциклопедия элементарной математики. Книга IV. геометрия:.М.:Физматлит, 1963 Интернет-ресурсы: http://ilib.mirror1.mccme.ru/djvu/istoria/istmat1.htm http://ru.wikipedia.org http://этюды