Тепловое излучение Это самый распространенный и простой вид излучения Тепловыми источниками излучения являются: Солнце Пламя Лампа накаливания
Cлайд 4
Электролюминесценция Это явление наблюдается при разряде в газах, при котором возбужденные атомы отдают энергию в виде световых волн. Благодаря этому разряд в газе сопровождается свечением. Северное сияние Рекламные надписи
Cлайд 5
Катодолюминесценция Это свечение твердых тел, вызванное бомбардировкой их электронами. Благодаря катодолюминесценции светятся экраны электронно – лучевых трубок телевизоров. Первый телевизор КВН – 49 Электронно – лучевая трубка телевизоров
Cлайд 6
Хемилюминесценция При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света,причем источник света остается холодным. Светлячок Кусок дерева, пронизанный светящейся грибницей Рыба,обитающая на большой глубине
Cлайд 7
Фотолюминесценция Под действием падающего излучения, атомы вещества возбуждаются и после этого тела высвечиваются. Лампа дневного света Елочные игрушки покрывают светящими красками
Cлайд 8
Распределение энергии в спектре Та энергия, которую несет с собой свет от источника,определенным образом распределена по волнам всех длин, входящим в состав светового пучка. Важнейшая характеристика излучения – распределение его по частотам или длинам волн. Это распределение характеризуется спектральной плотностью интенсивности излучения. Кривая зависимости спектральной плотности интенсивности излучения от частоты в видимой части спектра электрической дуги.
Cлайд 9
Спектральные аппараты Ход лучей в спектрографе 1. Через узкую щель проходит пучок света. 2. Линза №1 делает пучок света параллельным. 3. Призма раскладывает белый свет по длинам волн на спектр. 4. Линза №2 собирает разошедший пучок излучения по длинам волн в разные концы экрана. 5. Фотопластинка фиксирует спектр и получается спектограмма. Призменный спектральный аппарат – спектрограф.
Cлайд 10
Cлайд 11
Непрерывные спектры. Непрерывные спектры дают тела, находящиеся в твердом , жидком состоянии, а также сильно сжатые газы. Распределение энергии по частотам в видимой части непрерывного спектра
Cлайд 12
Линейчатые спектры. Примерное распределение спектральной плотности интенсивности излучения в линейчатом спектре. Линейчатые спектры дают все вещества в газообразном атомарном состоянии. Изолированные атомы излучают строго определенные длины волн.
Cлайд 13
Полосатый спектр Элетронный полосатый спектр азота N2 Полосатые спектры в отличие от линейчатых спектров создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.
Спектральный анализ Метод определения химического состава по его спектру. Атомы любого химического элемента дают спектр, не похожий на спектры всех других элементов: они способны излучать строго определенный набор длин волн. Видимая часть солнечного излучения при изучении с помощью спектроанализирующих приборов оказывается неоднородной – в спектре наблюдаются линии поглощения, впервые описанные в 1814 году И. Фраунгофером. Спектральный анализ позволяет получить информацию о составе Солнца, поскольку определенный набор спектральных линий исключительно точно характеризует химический элемент. Так, с помощью наблюдений спектра Солнца был открыт гелий. С помощью спектрального анализа узнали, что звезды состоят из тех же самых элементов, которые имеются и на Земле. 1.
Cлайд 16
2. С помощью спектрального анализа можно обнаружить данный элемент в составе сложного вещества. Благодаря универсальности спектральный анализ является основным методом контроля состава вещества в металлургии, машиностроении, атомной индустрии. Лабораторная электролизная установка для анализа металлов «ЭЛАМ». Установка предназначена для проведения весового электролитического анализа меди, свинца, кобальта и др. металлов в сплавах и чистых металлах. Стационарно – искровые оптико - эмиссонные спектрометры «МЕТАЛСКАН –2500». Предназначены для точного анализа металлов и сплавов, включая цветные, сплавы черных металлов и чугуны.
Шкала электромагнитных излучений. Шкала электромагнитных волн простирается от длинных Радиоволн до гамма – лучей. Электромагнитные волны различной Длины условно делят на диапазоны по различным признакам ( способу получения, способу регистрации, характеру взаимодействия с веществом).
Cлайд 19
Все виды излучений имеют, по существу, одну и ту же физическую природу. Луи де Бройль Виды излучений Длина волны Скорость распростра- нения в вакууме Получение Регистра ция Харак - ка, свойства Применение Радиоволны Инфракрас- ное излучение Видимый свет Ультрафиолетовое излучение Рентгеновс- кое излучение -излучение
Cлайд 20
Виды излучений Длина волны Скорость распрост-ранения в вакууме Получение Регистра- ция Харак - ка, свойства Применение Радиоволны 10 км (3х10^ 4 – 3х10 ^12 Гц) C= 3x10^8 Транзистор-ные цепи Резонатор Герца, Когерер, антенна Отражение, Преломление Дифракция Поляризация Связь и навигация Инфракрас-ное излучение 0,1м – 770 нм (3х10^ 12 – 4х 10 ^14 Гц) C=3x10^8 Электричес-кий камин Болометр, Фотоэлемент термостолбик Отражение, Преломление Дифракция Поляризация Приготовление пищи Нагревание, сушка, Тепловое фотокопирование Видимый свет 770 – 380 нм (4х10^ 14 – 8х10 ^14 Гц) C=3x10^8 Лампа накаливания, Молнии, Пламя Спектрограф, Болометр Отражение, Преломление Дифракция Поляризация Наблюдение за видимым миром, Преимущественно путем отражения Ультрафио летовое излучение 380 – 5 нм (8х10^ 14 – 6х 10 ^16 Гц) C=3x10^8 Разрядная трубка, углеродная Дуга Фотоэлемент Люминесценция, болометр Фотохимические Лечение заболеваний кожи, уничтожение бактерий, стороже- вые устройства Рентгеновс- кое излучение 5 нм– 10^ –2 нм (6х 10^ 16 – 3х10 ^19 Гц) C=3x10^8 Рентгеновс-кая трубка Фотопластинка Проникаю- щая способность Дифракция Рентгенография, радиология, обнаружение под-делок произведений искусства - излучение 5x10^-11 - 10^-15 м C=3x10^8 Циклотрон Кобальт - 60 Трубка Гейгера Порождаются космически ми объектами Стерилизация, Медицина, лечение рака