X

Код презентации скопируйте его

Ширина px

Вы можете изменить размер презентации, указав свою ширину плеера!

Подготовка к ЕГЭ. Полезно знать

Скачать эту презентацию

Презентация на тему Подготовка к ЕГЭ. Полезно знать

Скачать эту презентацию

Cлайд 1
Подготовка к ЕГЭ. Полезно знать. Подготовка к ЕГЭ. Полезно знать.
Cлайд 2
Задачи на смеси и сплавы Удобно решать с использованием следующих вспомогател... Задачи на смеси и сплавы Удобно решать с использованием следующих вспомогательных средств: каждая отдельная смесь (или сплав), фигурирующая в задаче, представляется в виде таблицы, в которой записывается информация о составе данной смеси.
Cлайд 3
Например, дан раствор соли с общей массой 500 и концентрацией соли 40 %. Пред... Например, дан раствор соли с общей массой 500 и концентрацией соли 40 %. Представляем такой раствор в виде таблицы: 60 % 500 Слева от таблицы записывается масса всего раствора. В левой колонке таблицы записывается информация об основном компоненте раствора (в данной задаче это соль). В первой строке таблицы записывается концентрация, во второй масса компонента. Найденная величина массы помещается во второй строке таблицы Если при решении задачи понадобятся данные о втором компоненте раствора, то они заносятся во вторую колонку таблицы 200 300 ( ). ( ; ) соль вода 40 %
Cлайд 4
ПРАВИЛО: При смешивании нескольких растворов складываются как общие массы рас... ПРАВИЛО: При смешивании нескольких растворов складываются как общие массы растворов, так и массы компонентов этих растворов.
Cлайд 5
Задача. Смешали 10%- ный и 25%- ный растворы соли и получили 3кг 20% -ного ра... Задача. Смешали 10%- ный и 25%- ный растворы соли и получили 3кг 20% -ного раствора. Какое количество каждого раствора (в кг) было использовано? Решение х 3 (3 – х) = + 0,1х 0,25(3-х) Имеем: 0,1x + 0,25(3- x) = 0,6 0,1x + 0,75 – 0,25x = 0,6 -0,15x = -0,15 x = 1 3 – x = 3 – 1 = 2 Ответ: 1 кг; 2 кг 0,6 соль вода 10% соль вода 25% соль вода 20%
Cлайд 6
Задача. Сколько кг воды нужно выпарить из 0,5 т целлюлозной массы, содержащей... Задача. Сколько кг воды нужно выпарить из 0,5 т целлюлозной массы, содержащей 85% воды, чтобы получить массу с содержанием 75% воды? Решение - 0,5 х = 0,5 · 0,85 = 0,425 0,425 (0,5-х) 0,75( 0,5 – x) х Имеем: 0,425 - x = 0,75( 0,5 – x) 0,425 – x = 0,375 – 0,75x x - 0, 75x = 0,425 – 0,375 0,25x = 0,05 x = 0,2 Ответ: 200 кг цел-за вода 85% цел-за вода 100% цел-за вода 75%
Cлайд 7
Задача. Смешали 2л 60%- ного раствора соли с 3л 50%- ного раствора соли и к с... Задача. Смешали 2л 60%- ного раствора соли с 3л 50%- ного раствора соли и к смеси добавили 1л чистой воды. Какова концентрация соли в полученной смеси? Решение 2 3 1 + + = = Символы «+» между таблицами показывают, что растворы смешиваются и, следовательно, соответствующие массы складываются. 1) Находим массу соли в первом растворе: 0,6 · 2 = 1,2 2) Находим массу соли во втором растворе: 0,5 · 3 = 1,5 Для каждого раствора имеем: Масса соли: 1,2 + 1,5 + 0 = общая раствора: 2 + 3 + 1 = 2,7 6 Имеем: 6 — 100% 2,7 — х% => х = 45% Ответ: 45% соль вода 60% соль вода Х % соль вода 50% соль вода 0% 0
Cлайд 8
Задачи на «сухой остаток» Задача. В магазин привезли 100 кг клюквы, состоящей... Задачи на «сухой остаток» Задача. В магазин привезли 100 кг клюквы, состоящей на 99% из воды. После длительного хранения и усушки содержание воды в клюкве уменьшилось до 98%. Каким стал новый вес клюквы? Решение 99% 1% 100кг 1кг 1кг 98% 2% 1кг — 2% Xкг — 100% => х = — = 50 (кг) 100 2 Ответ: 50 кг клюква вода клюква вода
Cлайд 9
Решение 90% 10% 22кг 22 ∙ 0,1 = (кг) 2,2 – масса свежих грибов без воды Задач... Решение 90% 10% 22кг 22 ∙ 0,1 = (кг) 2,2 – масса свежих грибов без воды Задача. Свежие грибы содержат по массе 90% воды, а сухие содержат 12% воды. Сколько получится сухих грибов из 22 кг свежих грибов? 2,2 12% 100% - 12% = сухих грибов 88% 2,2 кг — 88% X кг — 100% => х = = 2,2 ∙ 100 88 = 22 ∙ 10 88 = 10 4 = 2,5 (кг) = Ответ: 2,5 кг грибы вода       грибы вода
Cлайд 10
Решить неравенство: (х-1) (х+8) 5-х ≥ 0 Решение Нули: 1 ; -8 ; 5 х Есть проме... Решить неравенство: (х-1) (х+8) 5-х ≥ 0 Решение Нули: 1 ; -8 ; 5 х Есть промежуток, которому принадлежит число 0 На этом промежутке установим знак. При х = 0 имеем: ( -1) ( +8) х х 5 - х ≥ 0 < - + + - э х (- ; -8] 8 ∩ [1 ; 5) Ответ: (- ; -8] 8 ∩ [1 ; 5)
Cлайд 11
«Шутливые» законы I: Увидел сумму – делай произведение II: Увидел произведени... «Шутливые» законы I: Увидел сумму – делай произведение II: Увидел произведение – делай сумму III: Увидел квадрат – понижай степень Совет: Если не знаешь, с чего начать преобразование тригонометрических выражений (за что «зацепиться»), начни с этих законов. Тригонометрические выражения во многих случаях подчиняются трём «законам»:
Cлайд 12
Решить уравнение: sin2x ∙ sin6x = cosx ∙ cox3x увидел произведение – делай су... Решить уравнение: sin2x ∙ sin6x = cosx ∙ cox3x увидел произведение – делай сумму : Решение 1 2 (cos (2x–6x) – cos (2x+6x)) = 1 2 (cos (x-3x) + cos (x+3x)) сos 4x – cos8x = cos 2x + cos4x (- ) (- ) cos4x – cos8x = cos2x + cos4x cos2x + cos8x = 0 увидел сумму – делай произведение : 2cos 2x+8 2 ∙ cos 2x-8x 2 = 0 сos5x ∙ cos(-3x) = 0 сos5x = 0 или cos3x = 0 5x = ∏ 2 + ∏k или 3x = ∏ 2 + ∏k x ∏ 10 = ∏k 5 + x = ∏ 6 ∏k + 3 (k Z) Э
Cлайд 13
Решить уравнение: cos 2x + cos 3x = 1 2 2 Решение увидел квадрат – понижай ст... Решить уравнение: cos 2x + cos 3x = 1 2 2 Решение увидел квадрат – понижай степень : 1 + cos4x 2 + 1 + cos6x 2 = 1 2 0 увидел сумму – делай произведение : 2cos 4x + 6x 2 ∙ cos 4x - 6x 2 = 0 cos5x ∙ cos(-x) = 0 5x = ∏ 2 ∏k + или cos5x = 0 или сos(-x)=0 x ∏ 2 ∏k + = ∏ 10 ∏k + x = 5 ∏ 10 ∏k + 5 ∏ 2 ∏k + ; Ответ: (k Z) Э
Cлайд 14
Фронтальная работа (взаимная проверка) Предложите способ решения данного триг... Фронтальная работа (взаимная проверка) Предложите способ решения данного тригонометрического уравнения 1)Приведение к квадратному; 2)приведение к однородному; 3)разложение на множители; 4)понижение степени; 5)преобразование суммы тригонометрических функций в произведение Вариант I Уравнение Способы решения 1 2 3 4 5 3sin2x+cos2x=1- sinxcosx 4cos2x-cosx-1 =0 4sin2x+cos2x=1 cosx+cos3x=0 2Sinxcos5x-cos5x=0 ВариантII Уравнение Способы решения 1 2 3 4 5 2sinxcosx – sinx=0 3cos2x-cos2x=1 6sin2x+4 sinxcosx=1 4sin2x+11sinx=3 sin3x=sin17x
Cлайд 15
Проверяем Вариант I Вариант II 1 2 3 4 5 1 + 2 + 3 + 4 + 5 + 1 2 3 4 5 1 + 2 ... Проверяем Вариант I Вариант II 1 2 3 4 5 1 + 2 + 3 + 4 + 5 + 1 2 3 4 5 1 + 2 + 3 + 4 + 5 +
Cлайд 16
Экспертная работа Экспертная работа
Cлайд 17
Cлайд 18
Cлайд 19
Метод декомпозиции Исходное неравенство О.Д.З. Декомпозиция неравенства (равн... Метод декомпозиции Исходное неравенство О.Д.З. Декомпозиция неравенства (равносильное исходному на О.Д.З.) а f(x) - a g(x) V 0 a > 0, a = 1 D(f) D(g) log f(x)- log g(x)V 0 a a а > 0, а = 1 f(x) > 0 g(x)>0 (a – 1)(f(x) – g(x))v0 (a – 1)(f(x) – g(x))v0
Cлайд 20
Решить неравенство 1) О.Д.З. log x -9 x + 5x 2 2 x+2 ≤ log 1 x+2 Решение. x -... Решить неравенство 1) О.Д.З. log x -9 x + 5x 2 2 x+2 ≤ log 1 x+2 Решение. x -9 x + 5x 2 2 > 0 x + 2 > 0 x + 2 = 1 (x – 3)(x + 3) x(x + 5) x > - 2 x = -1 x x x -5 -3 0 3 -2 -1 x Э (-2;-1) U (-1; 0) U ( 3; ∞) > 0
Cлайд 21
2) log x -9 x + 5x 2 2 x+2 log 1 x+2 ≤ О.Д.З (x + 2 – 1)( - 1) x -9 x + 5x 2 ... 2) log x -9 x + 5x 2 2 x+2 log 1 x+2 ≤ О.Д.З (x + 2 – 1)( - 1) x -9 x + 5x 2 2 ≤ 0 О.Д.З (x + 1)( x(x + 5) x -9 - x - 5x ) 2 2 ≤ 0 (x + 1) ( -5x – 9) x(x + 5) ≤ 0 О.Д.З (x + 1) ( 5x + 9) x(x + 5) ≥ 0 x x -5 -1,8 -1 3 -2 0 -1 0 x Э [ -1,8 ;-1) U ( 3; ∞) Ответ: [ -1,8 ;-1) U ( 3; ∞) О.Д.З О.Д.З О.Д.З О.Д.З. log - x+2 x -9 x + 5x 2 2 log 1 x+2 ≤ 0 О.Д.З
Cлайд 22
Решить неравенство - (0,5) x +3x-2 2 2x +2x-1 2 x ≤ 0 Решение. 1) О.Д.З. 5 - ... Решить неравенство - (0,5) x +3x-2 2 2x +2x-1 2 x ≤ 0 Решение. 1) О.Д.З. 5 - 1 = 0, х = 0 x 2) На О.Д.З. имеем: 2 - 2 5 - 5 2x +6x-4 2 2 x ≤ 0 1-2х-2х 0 (2 – 1)( (5 – 1)(х – 0) 2x + 6x - 4 - 2 2 (1-2х-2х )) ≤ 0 2x + 6x - 4 - 2 2 1+ 2х + 2х ≤ 0 х 4х + 8х -5 х 2 ≤ 0 4( x - )( x +2,5) x ≤ 0 0 0 x x x Э ( - ∞ ; ] U ( 0; ] 5 - 1 -2,5 0,5 0,5 -2,5 0,5 О.Д.З
Cлайд 23
Скачать эту презентацию
Наверх