КООРДИНАТЫ ВЕКТОРА Отложим вектор так, чтобы его начало совпало с началом координат. Тогда координаты его конца называются координатами вектора. Обозначим , , векторы с координатами (1, 0, 0), (0, 1, 0), (0, 0, 1) соответственно. Их длины равны единице, а направления совпадают с направлениями соответствующих осей координат. Будем изображать эти векторы, отложенными от начала координат и называть их координатными векторами.
Cлайд 2
КООРДИНАТЫ ВЕКТОРА Теорема. Вектор имеет координаты (x, y, z) тогда и только тогда, когда он представим в виде Доказательство. Отложим вектор от начала координат и его конец обозначим через А. Имеет место равенство Точка А имеет координаты (x, y, z) тогда и только тогда, когда выполняются равенства и, значит,
Cлайд 3
ДЛИНА ВЕКТОРА Если вектор задан координатами начальной и конечной точек, A1(x1, y1, z1), A2(x2, y2, z2), то его длина выражается формулой
Упражнение 8 Найдите координаты точки N, если вектор имеет координаты (4, -3, 0) и точка M - (1, -3, -7). Ответ: (5, -6, -7).
Cлайд 12
Упражнение 9 Какому условию должны удовлетворять координаты вектора, чтобы он был: а) перпендикулярен координатной плоскости Oxy; б) параллелен координатной прямой Ox? Ответ: а) Первая и вторая координаты равны нулю; б) вторая и третья координаты равны нулю.
Cлайд 13
Упражнение 10 Найдите координаты конца единичного вектора с началом в точке A(1, 2, 3) и: а) перпендикулярного плоскости Oxy; б) параллельного прямой Ox. Ответ: а) (1,2,4), (1,2,2); б) (2,2,3), (0,2,3).