Экологические проблемы эксплуатации АЭС Семеняченко Е.Ю., учитель физики МБОУ «СОШ №12» г. Ноябрьск ЯНАО
Cлайд 2
"У нас нет времени экспериментировать с призрачными источниками энергии, цивилизация в опасности, и нам нужно сейчас использовать ядерную энергию – единственный безопасный и доступный источник энергии, или страдать от боли, которую уже в скором времени нам причинит оскорбленная планета". Профессор Джеймс Лавлок, основатель международного «зеленого» движения, 2004 г.
Cлайд 3
Доля атомной энергетики в мировом производстве электрической энергии составляет 17%. По данным МАГАТЭ (Международное агентство по атомной энергетики) мировую атомную энергетику представляют 450 атомных реакторов, работающих в 31 стране
Cлайд 4
Не существует способов получения электроэнергии, не сопряженных с риском возможного вреда . АЭС при их нормальной эксплуатации в экологическом отношении безопаснее тепловых электростанций на угле и других источников электроэнергии.
Cлайд 5
Дата ввода первых мощностей АЭС по странам Дата ввода первых мощностей Страна 1954 СССР 1956 Великобритания 1957 США 1963 Италия 1965 Франция 1966 ФРГ, Япония, ГДР 1967 Канада 1968 Испания, Нидерланды 1969 Швейцария, Индия 1971 Швеция, Пакистан 1974 Бельгия, Болгария, Аргентина 1977 Финляндия,Юж.Корея, о.Тайвань 1979 Чехословакия
Cлайд 6
Уже построено в стадии строительства
Cлайд 7
В России имеется 10 атомных электростанций (АЭС), и практически все они расположены в густонаселенной европейской части страны. В 30-километровой зоне этих АЭС проживает более 4 млн. человек. Балаковская АЭС Белоярская АЭС Билибинская АЭС Калининская АЭС (Тверская область, г.Удомля) Кольская АЭС Курская АЭС Ленинградская АЭС Нововоронежская АЭС Ростовская (Волгодонская) АЭС Смоленская АЭС
Cлайд 8
Преимущества атомных электростанций Нет газовых выбросов, Нет необходимости вести огромные объемы строительства, возводить плотины и хоронить плодородные земли на дне водохранилищ.
Cлайд 9
Воздействие АЭС на окружающую среду Локальное механическое воздействие на рельеф при строительстве; Сток поверхностных и грунтовых вод, содержащих химические и радиоактивные компоненты; Изменение характера землепользования и обменных процессов в непосредственной близости от АЭС; Изменение микроклиматических характеристик прилежащих районов.
Cлайд 10
Отрицательные экологические факторы: 1. Тепловое загрязнение: Тепловые потери АЭС в 1,5 раза больше, чем ТЭС аналогичной мощности, поэтому КПД атомных электростанций невелик (20-25%), и их работа сопровождается «сбросом» огромного количества теплоты в воздух и воду.
Cлайд 11
В нагретой теплой воде водоемов происходит бурное развитие сине-зеленых водорослей, наступает «цветение» воды; это явление, получившее название автрофизиции, делает невозможным использование таких водоемов для питьевого водоснабжения.
Cлайд 12
2. Наличие радиоактивных отходов: Урановая руда добывается на рудниках подземным или открытым способом. Эта отрасль горнодобывающего производства ухудшает окружающую среду, загрязняя воздух, почву, поверхностные и подземные воды. Отходы на стадии добычи и переработки природного урана очень велики и составляют 99,8%. Отрицательные экологические факторы:
Cлайд 13
Из резервуаров для хранения жидких отходов радиоактивные вещества могут попадать в грунтовые воды и расположенные рядом поверхностные водоемы
Cлайд 14
Твердые и жидкие отходы, возникающие при регенерации ядерного топлива, обладают очень высокой радиоактивностью и требуют специальной переработки и специального захоронения в целях обеспечения безопасности
Cлайд 15
Изменение состава ОЯТ после облучения в реакторе Количество отработавшего топлива всех реакторов в мире составляет около 10 500 т в год ЯТ ОЯТ
Cлайд 16
Накопление ОЯТ в мировой атомной энергетике
Cлайд 17
Накопление ОЯТ в Российской Федерации
Cлайд 18
Имеется две различные стратегии обращения с отработавшим ядерным топливом ОЯТ перерабатывается (или хранится для будущей переработки) с целью извлечения урана и плутония для нового смешанного оксидного (MOX) топлива ОЯТ считается отходами и хранится до захоронения Стоимость переработки 1 т ОЯТ на предприятиях Велико британии и Франции составляет 2-3 млн долларов, что значи тельно дороже расходов на его хранение
Cлайд 19
Реализация стратегий обращения с ОЯТ строительство централизованного хранилища переход к сухому складированию ОЯТ вблизи АЭС развитие технологий переработки и трансмутации ОЯТ
Cлайд 20
Проект хранилища РАО и ОЯТ в глубине горы Юкка (США) Хранилище рассчитано на 10 тысяч лет Емкость хранилища 77 тыс. тонн РАО пятимильный туннель и серия штреков отходы заложены в стальные цилиндрические кассеты
Cлайд 21
Photo: Silja Line Photo: Richard Ryan Photo: Mats Bäcker Так выглядит современное хранилище РАО и ОЯТ
Cлайд 22
Самые развитые программы создания хранилищ - финская, шведская и американская, однако ни одна из них не обеспечит ввода в эксплуатацию хранилища ранее 2020 года Имеются серьезные основания считать, что все существующие в настоящее время методы обезвреживания радиоактивных отходов, в том числе химические, недостаточно надежны и представляют собой источник постоянной опасности для жизни во всех пространственных структурах биосферы.
Cлайд 23
3. Радиоактивные излучения: Это самая главная опасность атомной энергетики. РИ оказывает пагубное влияние на все живые организмы Отрицательные экологические факторы:
Cлайд 24
Под действием радиации поражаются клетки тканей, прежде всего их ядра, нарушаются способность клеток к делению и обмен веществ в них. Наиболее чувствительны к радиационному воздействию кроветворные органы (костный мозг, селезенка, лимфатические узлы), эпителий слизистых оболочек, щитовидная железа.
Cлайд 25
В результате радиоактивных излучений на органы человека возникают тяжелейшие заболевания: лучевая болезнь, злокачественные опухоли, приводящие нередко к смертельному исходу. Облучение оказывает сильное влияние на генетический аппарат, приводя к появлению потомств с уродливыми отклонениями и врожденными тяжелыми заболеваниями организма. Генетические последствия радиации
Cлайд 26
Степень биологического воздействия зависит от вида излучения, его интенсивности и продолжительности облучения организма Виды излучений Природа излучения Проникающая способность Ионизирующая способность Гамма Электромагнитная, рентгеновская Большая, очень высокая Малозначительная, ниже, чем у альфа частиц Альфа Поток ядер атома гелия Слабая Высокая Бета Поток электронов Высокая, выше чем у альфа Значительно ниже, чем у альфа Нейтронное Поток нейтронных частиц Очень высокая Высокая
Cлайд 27
Всего с момента начала эксплуатации АЭС в 14 странах мира произошло более 150 инцидентов и аварий различной степени сложности. Некоторые из них: В 1957г – в Уиндскейле (Англия) В1959г – в Санта-Сюзанне (США) В1961г – В Айдахо-Фолсе (США) В1979г – в Три-Майл-Айленд (США) 1986 год –Чернобыльская катастрофа.
Cлайд 28
Чернобыль- наша память и боль…
Cлайд 29
Cлайд 30
Cлайд 31
Cлайд 32
Последствия Чернобыльской катастрофы
Cлайд 33
При радиационном уровне свыше 15Ки на квадратный километр жизнь человека невозможна Территория заповедника заражена от 15 до 1200 Ки/км2 Жизнь сюда не вернется ни через 100, ни через 500, а на отдельных участках заповедника ни через – 1000 лет
Cлайд 34
Cлайд 35
Cлайд 36
Коэффициент чувствительности ткани при эквивалентной дозе облучения Ткани Эквивалентная доза% Костная ткань 0,03 Щитовидная железа 0,03 Красный костный мозг 0,12 Легкие 0,12 Молочная железа 0,15 Яичники, семенники 0,25 Другие ткани 0,3 Организм в целом 1
Cлайд 37
Cлайд 38
Памятник ликвидаторам аварии
Cлайд 39
Cлайд 40
Cлайд 41
С техникой XX и начала XXI века нужно быть на Вы. Проблемы нравственности и ответственности перед Людьми, Миром, и Жизнью за научно- технические творения и связанные с ними решения приобретают для деятелей науки и техники, руководителей всех рангов этих отраслей и государства первостепенное значение. Ныне, каждый должен отчетливо понимать опасность, которая исходит от техники при бездумном, неграмотном или безнравственном отношении с нею.
Cлайд 42
И твердит Природы голос: В вашей власти, в вашей власти, Чтобы все не раскололось На бессмысленные части!