Код презентации скопируйте его
 Справимся легко! №1. По графику функции y=f(x) ответьте на вопросы: Сколько точек максимума имеет эта функция? Назовите точки минимума функции. Сколько промежутков возрастания у этой функции? Назовите наименьший из промежутков убывания этой функции.
    
    Справимся легко! №1. По графику функции y=f(x) ответьте на вопросы: Сколько точек максимума имеет эта функция? Назовите точки минимума функции. Сколько промежутков возрастания у этой функции? Назовите наименьший из промежутков убывания этой функции.
 Легко ли? №2. (задание В5 ЕГЭ по математике) По графику функции y=f ´(x) ответьте на вопросы: Сколько точек максимума имеет эта функция? Назовите точки минимума функции. Сколько промежутков возрастания у этой функции? Найдите длину промежутка убывания этой функции.
    
    Легко ли? №2. (задание В5 ЕГЭ по математике) По графику функции y=f ´(x) ответьте на вопросы: Сколько точек максимума имеет эта функция? Назовите точки минимума функции. Сколько промежутков возрастания у этой функции? Найдите длину промежутка убывания этой функции.
 Для нас задача… Составить (создать, разработать) правило (алгоритм), с помощью которого можно исследовать функции на монотонность и экстремумы по её производной.
    
    Для нас задача… Составить (создать, разработать) правило (алгоритм), с помощью которого можно исследовать функции на монотонность и экстремумы по её производной.
 Теорема 1 Если во всех точках открытого промежутка Х производная f ´(x) больше или равна нулю (причем f ´(x) =0 лишь в отдельных точках), то функция y=f (x) возрастает на промежутке Х.
    
    Теорема 1 Если во всех точках открытого промежутка Х производная f ´(x) больше или равна нулю (причем f ´(x) =0 лишь в отдельных точках), то функция y=f (x) возрастает на промежутке Х.
 Теорема 2 Если во всех точках открытого промежутка Х производная f ´(x) меньше или равна нулю (причем f ´(x) =0 лишь в отдельных точках), то функция y=f (x) убывает на промежутке Х.
    
    Теорема 2 Если во всех точках открытого промежутка Х производная f ´(x) меньше или равна нулю (причем f ´(x) =0 лишь в отдельных точках), то функция y=f (x) убывает на промежутке Х.
 Теорема 3 Если функция y=f (x) имеет экстремум в точке х0, то в этой точке производная функции либо равна нулю, либо не существует.
    
    Теорема 3 Если функция y=f (x) имеет экстремум в точке х0, то в этой точке производная функции либо равна нулю, либо не существует.
![№1. Непрерывная функция y=f(x) задана на [-10;11]. На рисунке изображён графи... №1. Непрерывная функция y=f(x) задана на [-10;11]. На рисунке изображён графи...](https://bigslide.ru/images/20/19187/389/img10.jpg) №1. Непрерывная функция y=f(x) задана на [-10;11]. На рисунке изображён график её производной. Укажите количество промежутков возрастания функции.
    
    №1. Непрерывная функция y=f(x) задана на [-10;11]. На рисунке изображён график её производной. Укажите количество промежутков возрастания функции.
 №2. Непрерывная функция y=f(x) задана на (-10;6). На рисунке изображён график её производной. Укажите количество точек графика этой функции, в которых касательная параллельна оси ОХ.
    
    №2. Непрерывная функция y=f(x) задана на (-10;6). На рисунке изображён график её производной. Укажите количество точек графика этой функции, в которых касательная параллельна оси ОХ.