ЭТО МЫ ЗНАЕМ Многогранник, составленный из двух равных n-угольников, лежащих в параллельных плоскостях и n параллелограммов. 2. Прямая призма, основания которой правильные много- угольники. 3. AA1D1D. 4. Призма, боковые ребра которой не равны высоте. A B B1 A1 C C1 D D1 H 5. Призма, боковые ребра которой перпендикулярны основаниям. 6. ABCD. 7. DB1. 8. D1H. 1 2 3 4 5 6 7 П И Р З М А П Р А В И Л Ь Н А Я Г Р А Н Ь Н А К Л О Н Н А Я П Р Я М А Я О С Н О В А Н И Е Д И А Г О Л В Н Ь А Ы С О Т А 8
Cлайд 3
ПИРАМИДА Из истории развития и применения пирамид Определение пирамиды Элементы пирамиды Виды пирамид, их особенности Площадь поверхности и объем пирамиды ПР по вычислению Sпов. и V пирамиды Решение задач
Cлайд 4
ЦЕЛИ УРОКА: Познакомиться с историей развития пирамид и их применением; Сформулировать определение пирамиды и её элементов через сравнение и обобщение; Рассмотреть виды пирамид, их особенности. Познакомится с формулами площади боковой и полной поверхности пирамиды, объёма пирамиды.
Cлайд 5
НЕМНОГО ИСТОРИИ «Пирамида» - от греческого слова «пюрамис», которым греки называли египетские пирамиды. Мексиканская пирамида Солнца Египетские пирамиды Гора Кайлас на Тибете
Cлайд 6
ПИРАМИДЫ В АРХИТЕКТУРЕ Новый вход в Лувр, Париж Торговый центр в Илинге, Лондон Александровский маяк
Cлайд 7
ОПРЕДЕЛЕНИЕ 3-угольник + 3 3-угольника 4-угольник + 4 3-угольника 6-угольник + 10-угольник + n-угольник + Пирамида – это многогранник, составленный из n-угольника и n треугольников. 6 3-угольников 10 3-угольников n 3-угольников Название пирамиды определяет n-угольник
Cлайд 8
ЭЛЕМЕНТЫ ПИРАМИДЫ Из чего состоит пирамида ? Основание Боковые грани Боковые ребра Вершина Высота Можно ли в пирамиде провести диагональ ? 1)Дайте определения всем элементам пирамиды (в случае затруднения воспользуйтесь учебником стр.65, п.28). 2)Начертите треугольную пирамиду PABC, выпишите её элементы.
Cлайд 9
ПРОВЕРЬ СЕБЯ Высота - A B C P H Основание - ABC многоугольник. Боковые грани - треугольники. AP, BP, CP Боковые ребра - . Вершина - общая точка всех боковых граней. P отрезки, соединяющие вершину с вершинами основания. ABP, BCP, ACP перпендикуляр, проведенный из вершины к плоскости основания. PH
Cлайд 10
ВИДЫ ПИРАМИД Неправильная пирамида Правильная пирамида ПИРАМИДЫ
Cлайд 11
ПРАВИЛЬНАЯ ПИРАМИДА Пирамида называется правильной, если в основании лежит правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром её основания, является высотой пирамиды. A B C D A B C D A B C D P A B C D P H H H Боковые ребра равны Боковые грани – равные равнобедренные треугольники Апофема правильной пирамиды – высота ее боковой грани, проведенная из вершины. K PK - апофема
Cлайд 12
ПЛОЩАДЬ БОКОВОЙ ПОВЕРХНОСТИ ПРАВИЛЬНОЙ ПИРАМИДЫ Sбок. = Pосн. * l где Pосн. – периметр основания, l –апофема правильной пирамиды.
Cлайд 13
ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ПИРАМИДЫ Sполн. = Sбок. + Sосн. где Sосн. – площадь основания.
Cлайд 14
ОБЪЁМ ПИРАМИДЫ V = Sосн. * h где Sосн. – площадь основания, h – высота пирамиды.
Cлайд 15
КЛЮЧЕВЫЕ СЛОВА УРОКА: Пирамида Основание Боковые грани Боковые ребра Вершина Высота пирамиды Правильная пирамида Апофема
Cлайд 16
НА СЛЕДУЮЩЕМ УРОКЕ: Решение простейших задач на вычисление площади поверхности и объема пирамиды.