Код презентации скопируйте его
Круговым конусом называется тело ограниченное кругом – основанием конуса, и конической поверхностью, образованной отрезками, соединяющими точку, вершину конуса, со всеми точками окружности, ограничивающей основание конуса.
Конус – это тело, которое получается, если коническую поверхность, образованную прямыми, соединяющими фиксированную точку со всеми точками какой–нибудь кривой, ограничить плоскостью.
Прямой круговой конус. Круговой конус называется прямым, если его высота попадает в центр круга.
Чему равен угол между образующей и основанием конуса, если известен угол между высотой и образующей. ? 650
Конус можно получить, вращая прямоугольный треугольник вокруг одного из катетов. При этом осью вращения будет прямая, содержащая высоту конуса. Эта прямая так и называется – осью конуса.
Конус получен при вращении прямоугольного треугольника S = 14. Радиус основания конуса равен 4. Определите высоту этого конуса. ? 7
Сечения конуса. Если через вершину конуса провести плоскость, пересекающую основание, то в сечении получится равнобедренный треугольник.
Сечения конуса. Сечение конуса, проходящее через ось, называется осевым. В основании осевого сечения лежит диаметр – максимальная хорда, поэтому угол при вершине осевого сечения – это максимальный угол между образующими конуса. (Угол при вершине конуса).
Через середину высоты конуса провели плоскость, перпендикулярную оси, и получили круг R = 5. Чему равна площадь основания конуса? ? 100π
Вписанная и описанная пирамиды. Пирамидой, вписанной в конус, называется такая пирамида, основание которой – многоугольник, вписанный в основание конуса, а вершина совпадает с вершиной конуса.
Пусть высота конуса равна 5 , а радиус основания – 2. В конус вписана правильная треугольная пирамида. Определите ее объем. ? 5√3
Вписанная и описанная пирамиды. Пирамида называется описанной около конуса, если ее основание – это многоугольник, описанный около основания конуса, а вершина совпадает с вершиной конуса.
Плоскости боковых граней описанной пирамиды проходят через образующую конуса и касательную к окружности основания, т.е. касаются боковой поверхности конуса.
Вокруг конуса описана правильная четырехугольная пирамида. Радиус основания и образующая конуса известны. Найдите боковое ребро пирамиды. ? 2√2
Боковая поверхность конуса. Под боковой поверхностью конуса мы будем понимать предел, к которому стремится боковая поверхность вписанной в этот конус правильной пирамиды, когда число боковых граней неограниченно увеличивается.
Теорема. Площадь боковой поверхности конуса равна половине произведения длины окружности основания на образующую. Дано: R – радиус основания конуса, l – образующая конуса. Доказать: Sбок.кон.= π Rl
Пусть конус будет получен от вращения прямоугольного треугольника с известными катетами. Найдите боковую поверхность этого конуса. ? 20π
Развертка конуса. Развертка конуса – это круговой сектор. Его можно рассматривать как развертку боковой поверхности вписанной правильной пирамиды, у которой число боковых граней бесконечно увеличивается.
Зная угол, образованный высотой и образующей конуса, можно вычислить угол сектора, полученного при развертке конуса, и наоборот.
По данным рисунка определите, чему равен угол развертки этого конуса. Ответ дайте в градусах. ? 720
1) Используем формулу, связывающую угол кругового сектора развертки с углом между высотой и образующей конуса. Получим угол между высотой и образующей, а затем найдем угол между образующей и основанием конуса.
Объем конуса. Дано: R – радиус основания Н – высота конуса Доказать: Vкон.= 1/3 Sосн.H Теорема. Объем конуса равен одной трети произведения площади основания на высоту.
Объемом конуса будем считать предел, к которому стремится объем вписанной в этот конус правильной пирамиды, когда число боковых граней неограниченно увеличивается. Доказательство:
Дано: SABC – пирамида, вписанная в конус SA = 13, AB = 5, ے ACB = 300. Найти: Vконуса Задача.