Код презентации скопируйте его
 Круговым конусом называется тело ограниченное кругом – основанием конуса, и конической поверхностью, образованной отрезками, соединяющими точку, вершину конуса, со всеми точками окружности, ограничивающей основание конуса.
    
    Круговым конусом называется тело ограниченное кругом – основанием конуса, и конической поверхностью, образованной отрезками, соединяющими точку, вершину конуса, со всеми точками окружности, ограничивающей основание конуса.
 Конус – это тело, которое получается, если коническую поверхность, образованную прямыми, соединяющими фиксированную точку со всеми точками какой–нибудь кривой, ограничить плоскостью.
    
    Конус – это тело, которое получается, если коническую поверхность, образованную прямыми, соединяющими фиксированную точку со всеми точками какой–нибудь кривой, ограничить плоскостью.
 Прямой круговой конус. Круговой конус называется прямым, если его высота попадает в центр круга.
    
    Прямой круговой конус. Круговой конус называется прямым, если его высота попадает в центр круга.
 Чему равен угол между образующей и основанием конуса, если известен угол между высотой и образующей. ? 650
    
    Чему равен угол между образующей и основанием конуса, если известен угол между высотой и образующей. ? 650
 Конус можно получить, вращая прямоугольный треугольник вокруг одного из катетов. При этом осью вращения будет прямая, содержащая высоту конуса. Эта прямая так и называется – осью конуса.
    
    Конус можно получить, вращая прямоугольный треугольник вокруг одного из катетов. При этом осью вращения будет прямая, содержащая высоту конуса. Эта прямая так и называется – осью конуса.
 Конус получен при вращении прямоугольного треугольника S = 14. Радиус основания конуса равен 4. Определите высоту этого конуса. ? 7
    
    Конус получен при вращении прямоугольного треугольника S = 14. Радиус основания конуса равен 4. Определите высоту этого конуса. ? 7
 Сечения конуса. Если через вершину конуса провести плоскость, пересекающую основание, то в сечении получится равнобедренный треугольник.
    
    Сечения конуса. Если через вершину конуса провести плоскость, пересекающую основание, то в сечении получится равнобедренный треугольник.
 Сечения конуса. Сечение конуса, проходящее через ось, называется осевым. В основании осевого сечения лежит диаметр – максимальная хорда, поэтому угол при вершине осевого сечения – это максимальный угол между образующими конуса. (Угол при вершине конуса).
    
    Сечения конуса. Сечение конуса, проходящее через ось, называется осевым. В основании осевого сечения лежит диаметр – максимальная хорда, поэтому угол при вершине осевого сечения – это максимальный угол между образующими конуса. (Угол при вершине конуса).
 Через середину высоты конуса провели плоскость, перпендикулярную оси, и получили круг R = 5. Чему равна площадь основания конуса? ? 100π
    
    Через середину высоты конуса провели плоскость, перпендикулярную оси, и получили круг R = 5. Чему равна площадь основания конуса? ? 100π
 Вписанная и описанная пирамиды. Пирамидой, вписанной в конус, называется такая пирамида, основание которой – многоугольник, вписанный в основание конуса, а вершина совпадает с вершиной конуса.
    
    Вписанная и описанная пирамиды. Пирамидой, вписанной в конус, называется такая пирамида, основание которой – многоугольник, вписанный в основание конуса, а вершина совпадает с вершиной конуса.
 Пусть высота конуса равна 5 , а радиус основания – 2. В конус вписана правильная треугольная пирамида. Определите ее объем. ? 5√3
    
    Пусть высота конуса равна 5 , а радиус основания – 2. В конус вписана правильная треугольная пирамида. Определите ее объем. ? 5√3
 Вписанная и описанная пирамиды. Пирамида называется описанной около конуса, если ее основание – это многоугольник, описанный около основания конуса, а вершина совпадает с вершиной конуса.
    
    Вписанная и описанная пирамиды. Пирамида называется описанной около конуса, если ее основание – это многоугольник, описанный около основания конуса, а вершина совпадает с вершиной конуса.
 Плоскости боковых граней описанной пирамиды проходят через образующую конуса и касательную к окружности основания, т.е. касаются боковой поверхности конуса.
    
    Плоскости боковых граней описанной пирамиды проходят через образующую конуса и касательную к окружности основания, т.е. касаются боковой поверхности конуса.
 Вокруг конуса описана правильная четырехугольная пирамида. Радиус основания и образующая конуса известны. Найдите боковое ребро пирамиды. ? 2√2
    
    Вокруг конуса описана правильная четырехугольная пирамида. Радиус основания и образующая конуса известны. Найдите боковое ребро пирамиды. ? 2√2
 Боковая поверхность конуса. Под боковой поверхностью конуса мы будем понимать предел, к которому стремится боковая поверхность вписанной в этот конус правильной пирамиды, когда число боковых граней неограниченно увеличивается.
    
    Боковая поверхность конуса. Под боковой поверхностью конуса мы будем понимать предел, к которому стремится боковая поверхность вписанной в этот конус правильной пирамиды, когда число боковых граней неограниченно увеличивается.
 Теорема. Площадь боковой поверхности конуса равна половине произведения длины окружности основания на образующую. Дано: R – радиус основания конуса, l – образующая конуса. Доказать: Sбок.кон.= π Rl
    
    Теорема. Площадь боковой поверхности конуса равна половине произведения длины окружности основания на образующую. Дано: R – радиус основания конуса, l – образующая конуса. Доказать: Sбок.кон.= π Rl
 Пусть конус будет получен от вращения прямоугольного треугольника с известными катетами. Найдите боковую поверхность этого конуса. ? 20π
    
    Пусть конус будет получен от вращения прямоугольного треугольника с известными катетами. Найдите боковую поверхность этого конуса. ? 20π
 Развертка конуса. Развертка конуса – это круговой сектор. Его можно рассматривать как развертку боковой поверхности вписанной правильной пирамиды, у которой число боковых граней бесконечно увеличивается.
    
    Развертка конуса. Развертка конуса – это круговой сектор. Его можно рассматривать как развертку боковой поверхности вписанной правильной пирамиды, у которой число боковых граней бесконечно увеличивается.
 Зная угол, образованный высотой и образующей конуса, можно вычислить угол сектора, полученного при развертке конуса, и наоборот.
    
    Зная угол, образованный высотой и образующей конуса, можно вычислить угол сектора, полученного при развертке конуса, и наоборот.
 По данным рисунка определите, чему равен угол развертки этого конуса. Ответ дайте в градусах. ? 720
    
    По данным рисунка определите, чему равен угол развертки этого конуса. Ответ дайте в градусах. ? 720
 1) Используем формулу, связывающую угол кругового сектора развертки с углом между высотой и образующей конуса. Получим угол между высотой и образующей, а затем найдем угол между образующей и основанием конуса.
    
    1) Используем формулу, связывающую угол кругового сектора развертки с углом между высотой и образующей конуса. Получим угол между высотой и образующей, а затем найдем угол между образующей и основанием конуса.
 Объем конуса. Дано: R – радиус основания Н – высота конуса Доказать: Vкон.= 1/3 Sосн.H Теорема. Объем конуса равен одной трети произведения площади основания на высоту.
    
    Объем конуса. Дано: R – радиус основания Н – высота конуса Доказать: Vкон.= 1/3 Sосн.H Теорема. Объем конуса равен одной трети произведения площади основания на высоту.
 Объемом конуса будем считать предел, к которому стремится объем вписанной в этот конус правильной пирамиды, когда число боковых граней неограниченно увеличивается. Доказательство:
    
    Объемом конуса будем считать предел, к которому стремится объем вписанной в этот конус правильной пирамиды, когда число боковых граней неограниченно увеличивается. Доказательство:
 Дано: SABC – пирамида, вписанная в конус SA = 13, AB = 5, ے ACB = 300. Найти: Vконуса Задача.
    
    Дано: SABC – пирамида, вписанная в конус SA = 13, AB = 5, ے ACB = 300. Найти: Vконуса Задача.