X

Код презентации скопируйте его

Ширина px

Вы можете изменить размер презентации, указав свою ширину плеера!

Решение задач В8 ЕГЭ по математике

Скачать эту презентацию

Презентация на тему Решение задач В8 ЕГЭ по математике

Скачать эту презентацию

Cлайд 1
Решение заданий В8 ЕГЭ по математике Артамонова Л.В., учитель математики МКОУ... Решение заданий В8 ЕГЭ по математике Артамонова Л.В., учитель математики МКОУ «Москаленский лицей»
Cлайд 2
Решение. Точки максимума соответствуют точкам смены знака производной с плюса... Решение. Точки максимума соответствуют точкам смены знака производной с плюса на минус. На отрезке [−9;6] функция имеет две точки максимума x = − 4 и x = 4. Ответ: 2. На рисунке изображен график производной функции f(x), определенной на интервале (−10; 8). Найдите количество точек максимума функции f(x) на отрезке [−9;6].
Cлайд 3
Решение. На рисунке изображен график функции y=f(x), определенной на интервал... Решение. На рисунке изображен график функции y=f(x), определенной на интервале (−1; 12). Определите количество целых точек, в которых производная функции отрицательна. Производная функции отрицательна на тех интервалах, на которых функция убывает, т. е. на интервалах (0,5; 3), (6; 10) и (11; 12). В них содержатся целые точки 1, 2, 7, 8 и 9. Всего 5 точек. Ответ: 5.
Cлайд 4
На рисунке изображен график производной функции f(x), определенной на интерва... На рисунке изображен график производной функции f(x), определенной на интервале (−10; 4). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них. Решение. Промежутки убывания функции f(x) соответствуют промежуткам, на которых производная функции отрицательна, то есть интервалу (−9; −6) длиной 3 и интервалу (−2; 3) длиной 5. Длина наибольшего из них равна 5. Ответ: 5.
Cлайд 5
На рисунке изображен график производной функции f(x), определенной на интерва... На рисунке изображен график производной функции f(x), определенной на интервале (−7; 14). Найдите количество точек максимума функции f(x) на отрезке [−6; 9]. Решение. Точки максимума соответствуют точкам смены знака производной с положительного на отрицательный. На отрезке [−6; 9] функция имеет одну точку максимума x = 7. Ответ: 1.
Cлайд 6
На рисунке изображен график производной функции f(x), определенной на интерва... На рисунке изображен график производной функции f(x), определенной на интервале (−8; 6). Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них. Решение. Промежутки возрастания функции f(x) соответствуют промежуткам, на которых производная функции положительна, то есть интервалам (−7; −5), (2; 5). Наибольший из них — интервал (2; 5), длина которого 3.
Cлайд 7
На рисунке изображен график производной функции f(x), определенной на интерва... На рисунке изображен график производной функции f(x), определенной на интервале (−7; 10). Найдите количество точек минимума функции f(x) на отрезке [−3; 8]. Решение. Точки минимума соответствуют точкам смены знака производной с минуса на плюс. На отрезке [−3; 8] функция имеет одну точку минимума x = 4. Ответ: 1.
Cлайд 8
Cлайд 9
На рисунке изображен график производной функции f(x), определенной на интерва... На рисунке изображен график производной функции f(x), определенной на интервале (−16; 4). Найдите количество точек экстремума функции f(x) на отрезке [−14; 2]. Решение. Точки экстремума соответствуют точкам смены знака производной — изображенным на графике нулям производной. Производная обращается в нуль в точках −13, −11, −9, −7. На отрезке [−14; 2] функция имеет 4 точки экстремума. Ответ: 4.
Cлайд 10
На рисунке изображен график функции y=f(x), определенной на интервале (−2; 12... На рисунке изображен график функции y=f(x), определенной на интервале (−2; 12). Найдите сумму точек экстремума функции f(x). Решение. Заданная функция имеет максимумы в точках 1, 4, 9, 11 и минимумы в точках 2, 7, 10. Поэтому сумма точек экстремума равна 1 + 4 + 9 + 11 + 2 + 7 + 10 = 44. Ответ: 44.
Cлайд 11
Cлайд 12
На рисунке изображён график функции y=f(x) и касательная к нему в точке с абс... На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0. Решение. Значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс. Построим треугольник с вершинами в точках A (2; −2), B (2; 0), C (−6; 0). Угол наклона касательной к оси абсцисс будет равен углу, смежному с углом ACB
Cлайд 13
На рисунке изображен график функции y = f(x) и касательная к этому графику в ... На рисунке изображен график функции y = f(x) и касательная к этому графику в точке абсциссой, равной 3. Найдите значение производной этой функции в точке x = 3. Для решения используем геометрический смысл производной: значение производной функции в точке равняется угловому коэффициенту касательной к графику этой функции, проведенной в этой точке. Угловой коэффициент касательной равен тангенсу угла между касательной и положительным направлением оси х (tg α). Угол α = β, как накрест лежащие углы при параллельных прямых y=0, y=1 и секущей-касательной. Для треугольника ABC
Cлайд 14
На рисунке изображены график функции y=f(x)  и касательная к нему в точке с а... На рисунке изображены график функции y=f(x)  и касательная к нему в точке с абсциссой x 0   . Найдите значение производной функции f(x)  в точке x 0   . По свойствам касательной, формула касательной к функции f(x)  в точке x 0   равна y=f ′ (x 0 )⋅x+b,  b=const  По рисунку видно, что касательная к функции f(x)  в точке x 0   проходит через точки (-3;2), (5,4). Следовательно, можно составить систему уравнений
Cлайд 15
Источники http://reshuege.ru/ http://egemat.ru/prepare/B8.html http://bankege... Источники http://reshuege.ru/ http://egemat.ru/prepare/B8.html http://bankege.ru/
Скачать эту презентацию
Наверх