Методика работы с задачей Содержание Работа с текстом задачи Алгоритмическое предписание Основные теоретические положения, необходимые при построении Построение сечения Задача. Построить сечение пятиугольной призмы плоскостью, проходящей через три точки, одна из которых лежит в плоскости верхнего основания, а две другие – на несмежных боковом ребре и ребре нижнего основания. Задача по теме «Сечения многогранников плоскостью» Автор: Ракина Алёна, IV курс, 3 группа
Cлайд 2
Работа с текстом задачи Задача. Построить сечение пятиугольной призмы плоскостью, проходящей через три точки, одна из которых лежит в плоскости верхнего основания, а две другие – на несмежных боковом ребре и ребре нижнего основания. Определите тип задачи. Сечение задано тремя точками, не лежащими на одной прямой. Что дано в задаче? Дана пятиугольная призма; три точки (в плоскости верхнего основания, на несмежных боковом ребре и ребре нижнего основания). Что требуется задачей? Построить сечение данной призмы плоскостью, проходящей через данные точки. Какие существуют методы построения сечения многогранника плоскостью? Метод следа; метод внутреннего проектирования. Нарисуем данные задачи. Начало
Cлайд 3
Иллюстрация условий задачи Дано: Пятиугольная призма ABCDEA1B1C1D1E1; Точки K, M, P. Построить: Сечение плоскостью, проходящей через точки K, M, P. Сечение будем строить методом внутреннего проектирования. Начало A B C D E K P Для того, чтобы построить сечение потребуется вспомнить… A1 E1 D1 B1 C1 M Построение
Cлайд 4
Полезно вспомнить Аксиомы стереометрии А1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна. А2. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости. А3. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей. Следствия из аксиом Сл 1. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна. Сл 2. Через две пересекающиеся прямые проходит плоскость, и притом только одна. Свойство параллельных плоскостей Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. Начало Стр. 1 2
Cлайд 5
Полезно вспомнить Призма. Что называется призмой? Многогранник, составленный из двух равных многоугольников A1A2…An и B1B2…Bn, расположенных в параллельных плоскостях, и параллелограммов, называется призмой. Основные свойства параллельного проектирования Проекция прямой есть прямая. Проекция отрезка есть отрезок. Проекция параллельных отрезков – параллельные отрезки или отрезки, принадлежащие одной прямой. Проекция параллельных отрезков, а также проекции отрезков, лежащих на одной прямой, пропорциональны самим отрезкам. Стр. 1 2 Начало Алгоритм построения a b B1 B2 Bn A1 A2 An Многоугольники A1A2…An и B1B2…Bn – основания призмы. Параллелограммы A1A2B2B1, …, AnA1B1Bn – боковые грани.
Cлайд 6
Алгоритмическое предписание (метод внутреннего проектирования) да Сечение задано тремя точками, не лежащими на одной прямой Есть ли грань, содержащая две точки, задающие плоскость сечения нет Можно построить пересечение плоскости сечения и грани Строим параллельные проекции данных точек на плоскость основания Строим плоскость I, содержащую две из данных точек и их проекции Строим пересекающую её плоскость II, содержащую третью данную точку с её проекцией и одно из ребер, на котором мы ищём точку сечения Найдём точку пересечения прямой, содержащей две данные точки из плоскости I, и прямой пересечения плоскостей I и II Проведем прямую через точку пересечения прямых и третью данную точку Эта прямая пересекает ребро Точка пересечения и есть искомая Эта прямая пересечет прямую пересечения плоскости грани и плоскости II Достаточно найденных точек для построения сечения нет Строим искомое сечение, соединяя найденные точки пересечений плоскости сечения и плоскостей граней многогранника нет да да Начало Построение
Cлайд 7
Построение (метод внутреннего проектирования) Найдём точку пересечения секущей плоскости с ребром DD1. Построим проекцию PM на плоскость верхнего основания. Получим отрезок PM1. Найдём точку пересечения плоскости ADD1 и PM. Прямая KF1 будет пересекать ребро DD1 в искомой точке O. Найдём точку пересечения секущей плоскости с ребром A1E1. Построим проекцию KM на плоскость нижнего основания. Получим отрезок A1M. Построим проекцию PE на плоскость нижнего основания. Получили отрезок P1E1. Спроектируем точку пересечения P1E1 и A1M, точку N, на KM. Получим точку N1. Прямая PN1 пересекает P1E1 в точке L. Эта точка принадлежит секущей плоскости. Прямая ML пересекает A1E1 в точке R. Найдём точку пересечения секущей плоскости с ребром AB. Строим проекцию KP на плоскость нижнего основания. Получим отрезок A1P1. Найдём точку пересечения плоскости BM1M и KP. Это точка Q1. Прямая MQ1 пересекает BM1 в точке G. А прямая PG пересекает AB в точке S, а ребро CD – в точке T. Соединяем найденные точки пересечения секущей плоскости с ребрами призмы. STOMRK – искомое сечение. A B C D E K P A1 E1 D1 B1 C1 M M1 F F1 T S O N N1 R P1 L Q Q1 G Начало Алгоритм построения