Интерференция. Дифракция. Мясникова Г. И. Учитель физики
Cлайд 2
Интерференция света Интерференция — одно из наиболее убедительных доказательств волновых свойств. Интерференция присуща волнам любой природы. Интерференцией световых волн называется сложение двух когерентных волн, вследствие которого наблюдается усиление или ослабление результирующих световых колебаний в различных точках пространства.
Cлайд 3
Когерентные волны Для образования устойчивой интерференционной картины необходимо, чтобы источники волн были когерентными. Волны, имеющие одинаковую частоту и постоянную во времени разность фаз, называются когерентными. Все источники света, кроме лазеров, некогерентные.
Cлайд 4
Как можно наблюдать интерференцию света? Чтобы наблюдать интерференцию света, надо получить когерентные световые пучки. Для этого, до появления лазеров, во всех приборах для наблюдения интерференции света когерентные пучки получались путем разделения и последующего сведения световых лучей, исходящих из одного источника света. Для этого использовались щели, зеркала и призмы.
Cлайд 5
Опыт Юнга В начале 19-го века английский ученый Томас Юнг поставил опыт, в котором можно было наблюдать явление интерференции света. Свет, пропущенный через узкую щель, падал на две близко расположенные щели, за которыми находился экран. На экране вместо ожидаемых двух светлых полос появлялись чередующиеся цветные полосы.
Cлайд 6
Схема опыта Юнга
Cлайд 7
Наблюдение интерференции в лабораторных условиях
Cлайд 8
Интерференционные максимумы Интерференционные максимумы наблюдаются в точках, для которых разность хода волн ∆d равна четному числу полуволн, или, что то же самое, целому числу волн:
Cлайд 9
Интерференционные минимумы Интерференционные минимумы наблюдаются в точках, для которых разность хода волн ∆d равна нечетному числу полуволн:
Cлайд 10
Интерференция в тонких пленках Мы много раз наблюдали интерференционную картину, когда наблюдали за мыльными пузырями, за радужным переливом цветов тонкой пленки керосина или нефти на поверхности воды.
Cлайд 11
Объяснение интерференции в тонких пленках Происходит сложение волн, одна из которых отражается от наружной поверхности пленки, а вторая — от внутренней. Когерентность волн, отраженных от наружной и внутренней поверхностей пленки, обеспечивается тем, что они являются частями одного и того же светового пучка.
Cлайд 12
Объяснение цвета тонких пленок Томас Юнг объяснил, что различие в цвете связано с различием в длине волны (или частоте световых волн). Световым пучкам различного цвета соответствуют волны различной длины.
Cлайд 13
Объяснение цвета тонких пленок Для взаимного усиления волн, отличающихся друг от друга длиной (углы падения предполагаются одинаковыми), требуется различная толщина пленки.
Cлайд 14
Следовательно, если пленка имеет неодинаковую толщину, то при освещении ее белым светом должны появиться различные цвета.
Cлайд 15
Кольца Ньютона Простая интерференционная картина возникает в тонкой прослойке воздуха между стеклянной пластиной и положенной на нее плоско-выпуклой линзой, сферическая поверхность которой имеет большой радиус кривизны.
Cлайд 16
Интерференционная картина имеет вид концентрических колец
Cлайд 17
Объяснение «колец Ньютона» Волна 1 отражается от нижней поверхности линзы, а волна 2 — от поверхности лежащего под линзой стекла. Волны 1 и 2 когерентны: они имеют одинаковую длину и постоянную разность фаз, которая возникает из-за того, что волна 2 проходит больший путь, чем волна 1.
Cлайд 18
Определение радиуса колец Ньютона Если известен радиус кривизны R поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины λ гасят друг друга. Эти расстояния являются радиусами темных колец Ньютона, так как линии постоянной толщины воздушной прослойки представляют собой окружности.
Cлайд 19
Определение длины волны Зная радиусы колец, можно вычислить длину волны, используя формулу где R — радиус кривизны выпуклой поверхности линзы (k = 0,1,2,...), r — радиус кольца.
Cлайд 20
Дифракция света Дифракция света — отклонение волны от прямолинейного распространения при прохождении через малые отверстия и огибание волной малых препятствий.
Cлайд 21
Условие проявления дифракции: где d — характерный размер отверстия или препятствия, L — расстояние от отверстия или препятствия до экрана.
Cлайд 22
Наблюдение дифракции света Дифракция приводит к проникновению света в область геометрической тени
Cлайд 23
Соотношение между волновой и геометрической оптикой Одно из основных понятий волновой теории — фронт волны. Фронт волны — это совокупность точек пространства, до которых в данный момент дошла волна.
Cлайд 24
Принцип Гюйгенса Каждая точка среды, до которой доходит волна, служит источником вторичных волн, а огибающая этих волн представляет собой волновую поверхность в следующий момент времени.
Cлайд 25
Объяснение законов отражения и преломления света с точки зрения волновой теории Пусть плоская волна падает под углом на границу раздела двух сред. Согласно принципу Гюйгенса, каждая точка этой границы сама становится источником сферических волн. Волны, идущие во вторую среду, формируют преломленную плоскую волну. Волны, возвращающиеся в первую среду, формируют отраженную плоскую волну.
Cлайд 26
Отражение света Фронт отраженной волны BD образует такой же угол с плоскостью раздела двух сред, что и фронт падающей волны AC. Эти углы равны соответственно углам падения и отражения. Следовательно, угол отражения равен углу падения.
Cлайд 27
Преломление света Фронт падающей волны AC составляет больший угол с поверхностью раздела сред, чем фронт преломленной волны. Углы между фронтом каждой волны и поверхностью раздела сред равны соответственно углам падения и преломления. В данном случае угол преломления меньше угла падения.
Cлайд 28
Закон преломления света Расчеты показывают, что отношение синусов этих углов равно отношению скорости света в первой среде к скорости света во второй среде. Для данных двух сред это отношение постоянно. Отсюда следует закон преломления: отношение синуса угла падения к синусу угла преломления постоянно для данных двух сред.
Cлайд 29
Физический смысл показателя преломления Абсолютный показатель преломления равен отношению скорости света c в вакууме к скорости света v в данной среде:
Cлайд 30
Вывод Законы геометрической оптики являются следствиями волновой теории света, когда длина световой волны намного меньше размеров препятствий.