Если ты услышишь, что кто-то не любит математику, не верь. Её нельзя не любить - её можно только не знать.
Cлайд 3
уравнение вида ах2 + вх +с = 0, где х –переменная, а, в и с некоторые числа, причем а 0. ОПРЕДЕЛЕНИЕ: Квадратным уравнением называется
Cлайд 4
ПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ КВАДРАТНЫЕ УРАВНЕНИЯ а ≠ 0, в ≠ 0, с ≠ 0 а ≠ 0, в = 0, с = 0 2х2+5х-7=0 6х+х2-3=0 Х2-8х-7=0 25-10х+х2=0 3х2-2х=0 2х+х2=0 125+5х2=0 49х2-81=0
Cлайд 5
а) 6х2 – х + 4 = 0 б) 12х - х2 + 7 = 0 в) 8 + 5х2 = 0 г) х – 6х2 = 0 д) - х + х2 = 15 а = 6, в = -1, с = 4; а = -1, в = 12, с = 7; а = 5, в = 0, с = 8; а = -6, в =1, с = 0; а = 1, в =-1, с = -15. Определите коэффициенты квадратного уравнения:
Cлайд 6
РЕШЕНИЕ НЕПОЛНЫХ КВАДРАТНЫХ УРАВНЕНИЙ в=0 ах2+с=0 с=0 ах2+вх=0 в,с=0 ах2=0 1.Перенос с в правую часть уравнения. ах2= -с 2.Деление обеих частей уравнения на а. х2= -с/а 3.Если –с/а>0 -два решения: х1 = и х2 = - Если –с/а
Исторические сведения: Квадратные уравнения впервые встречаются в работе индийского математика и астронома Ариабхатты. Другой индийский ученый Брахмагупта (VII в) изложил общее правило решения квадратных уравнений, которое практически совпадает с современным. В Древней Индии были распространены публичные соревнования в решении трудных задач. Задачи часто облекались в стихотворную форму. ________________________________________________ Вот задача Бхаскары: Обезьянок резвых стая, всласть поевши, развлекалась. Их в квадрате часть восьмая на полянке забавлялась. А двенадцать по лианам стали прыгать, повисая. Сколько ж было обезьянок, ты скажи мне, в этой стае?
Cлайд 13
Решение задачи Бхаскары: Пусть было x обезьянок, тогда на поляне забавлялось – . Составим уравнение: + 12 = х Ответ: х1= 16 , х2= 48 обезьянок.