X

Код презентации скопируйте его

Ширина px

Вы можете изменить размер презентации, указав свою ширину плеера!

Правильные и полуправильные многогранники

Скачать эту презентацию

Презентация на тему Правильные и полуправильные многогранники

Скачать эту презентацию

Cлайд 1
Правильные и полуправильные многогранники. Тела Архимеда. Правильные и полуправильные многогранники. Тела Архимеда.
Cлайд 2
СОДЕРЖАНИЕ Правильные и полуправильные многогранники Тела Архимеда Леонардо д... СОДЕРЖАНИЕ Правильные и полуправильные многогранники Тела Архимеда Леонардо да Винчи
Cлайд 3
Правильным многогранником называется выпуклый многогранник, грани которого – ... Правильным многогранником называется выпуклый многогранник, грани которого – равные правильные многоугольники, а двугранные углы при всех вершинах равны между собой. Доказано, что в каждой из вершин правильного многогранника сходится одно и то же число граней и одно и то же число ребер. Всего в природе существует пять правильных многогранников. По сравнению с количеством правильных многоугольников это – очень мало: для каждого целого n>2 существует один правильный n-угольник, т.е. правильных многоугольников – бесконечно много. Правильные многогранники имеют названия по числу граней: тетраэдр (4 грани): гексаэдр (6 граней), октаэдр (8 граней), додекаэдр (12 граней) и икосаэдр (20 граней).
Cлайд 4
По-гречески "хедрон" означает грань, "тетра", "гекса" и т. д. – указанные чис... По-гречески "хедрон" означает грань, "тетра", "гекса" и т. д. – указанные числа граней. Нетрудно догадаться, что гексаэдр есть не что иное, как всем знакомый куб. Грани тетраэдра, октаэдра и икосаэдра – правильные треугольники, куба – квадраты, додекаэдра – правильные пятиугольники.
Cлайд 5
Если обозначить количество углов у одной грани правильного многогранника за q... Если обозначить количество углов у одной грани правильного многогранника за q, а количество граней, сходящихся в одной вершине – за p, можно получить точные характеристики каждого правильного многогранника. Вот они (первое число – q, второе – p): (3;3), (3;4), (4;3), (3;5), (5;3). При этом у куба и октаэдра, а также у икосаэдра и додекаэдра, числа p и q оказываются как бы переставленными. Эти многогранники называют двойственными. Тетраэдр считается двойственным сам себе. У двойственных многогранников количество ребер одинаковое.
Cлайд 6
Правильные многогранники симметричны. Это означает, что для любого произвольн... Правильные многогранники симметричны. Это означает, что для любого произвольно выбранного ребра AB и примыкающей к нему грани F можно так повернуть многогранник, что ребро AB перейдет в любой отличное от него ребро CD, точка A – в любой его конец (C или D), а грань F совпадет с одной из двух примыкающих к нему граней. Таких возможных поворотов – самосовмещений всего существует 4P, где P – число ребер многогранника. При этом половина из них – повороты вокруг воображаемых осей, соединяющих центр многогранника с его вершинами, серединами ребер и граней на углы, кратные соответственно 2  / q, и 2  / p, а другая половина – симметрии относительно плоскостей и "зеркальные повороты". Указанное "свойство максимальной симметричности" иногда принимают за определение правильного многогранника. Но человеку, далекому от математики, трудно представить себе геометрическое тело с таким определением.
Cлайд 7
Иоганн Кеплер называл куб "родителем" всех правильных многогранников. На осно... Иоганн Кеплер называл куб "родителем" всех правильных многогранников. На основе куба он смог построить все другие виды правильных многогранников. Если провести в противоположных гранях куба скрещивающиеся диагонали, то их концы окажутся вершинами тетраэдра, а вершины октаэдра – это центры граней куба. Полученные многоугольники действительно правильные, так как их грани – правильные треугольники. Равенство же двугранных углов следует из того, что при повороте куба ребро многогранника можно перевести в любое другое.
Cлайд 8
Для того, чтобы построить икосаэдр, на каждой грани куба нужно построить отре... Для того, чтобы построить икосаэдр, на каждой грани куба нужно построить отрезок длиной x (пока что это – любая длина) так, чтобы он был параллелен двум сторонам своей грани и перпендикулярен таким же отрезкам на соседних гранях. Середина его должна совпадать с центром грани. Соединим концы этих отрезков между собой, и мы получим двадцатигранник, грани которого – треугольники, и при каждой вершине их пять. Найдем такое число x, при котором все ребра этого многогранника равны, т. е. он правильный. Т.к. куб симметричен, то все ребра, не принадлежащие граням куба равны между собой. Примем длину ребра куба за a. Рассмотрим треугольник ABC (рис. 2), где AC = a – x, BC2 = CD2 + BD2 = 1/4 a2 + 1/4 x2. По теореме Пифагора получаем: AB2 = AC2 + CB2 = ( x2 + a2 + (a – x)2 ) / 4. Приравнивая AB к x, получаем квадратное уравнение: x2 + a x – a2 = 0, откуда x = a (  5 – 1) / 2. Интересно, что полученный множитель при a, т. е. отношение ребра куба к ребру вписанного в него икосаэдра – не что иное, как золотое сечение.
Cлайд 9
Теперь докажем равенство двугранных углов. Рассмотрим 5 ребер, выходящих из т... Теперь докажем равенство двугранных углов. Рассмотрим 5 ребер, выходящих из точки A. Концы их всех равноудалены и от точки A, и от центра куба O. Отсюда следует, что они лежат на пересечении двух сфер с центрами A и O, а значит – на окружности, причем ребра, соединяющие их с точкой A, равны. Значит, эти пять точек и точка a – вершины правильной пирамиды, а ее двугранные углы при вершине равны. Додекаэдр из икосаэдра можно получить так же, как и октаэдр из куба. соединяя середины смежных граней икосаэдра, мы получаем правильный пятиугольник. Всего таких пятиугольников будет 12. Двугранные углы многоугольника будут равны, так как трехгранные углы при его вершинах имеют равные плоские углы.
Cлайд 10
Правильные многогранники также называют платоновыми телами, хотя они были изв... Правильные многогранники также называют платоновыми телами, хотя они были известны еще за несколько веков до Платона. В одном из своих диалогов Платон связал правильные многоугольники с четырьмя стихиями. Тетраэдру соответствовал огонь, кубу – земля, октаэдру – воздух, икосаэдру – вода. Додекаэдру соответствовала пятая стихия – эфир. Так называемые полуправильные многогранники связывают с именем Архимеда. Это 13 тел, полученных при усечении правильных многогранников и два бесконечных ряда правильных призм и антипризм с равными ребрами.
Cлайд 11
В эпоху Возрождения ученый Иоганн Кеплер вслед за Платоном попытался связать ... В эпоху Возрождения ученый Иоганн Кеплер вслед за Платоном попытался связать правильные многогранники со строением Вселенной. С большей или меньшей точностью он разместил между сферами, содержащими орбиты шести известных планет, правильные многогранники таким образом, что каждый был описан около меньшей сферы и вписан в большую. Но имя Кеплера в геометрии прославило открытие двух из четырех правильных звездных тел. Два других в 1809 г. нашел француз Луи Пуансон.
Cлайд 12
Тетраэдр Куб Октаэдр Додекаэдр Икосаэдр Тетраэдр Куб Октаэдр Додекаэдр Икосаэдр
Cлайд 13
Cлайд 14
СОДЕРЖАНИЕ СОДЕРЖАНИЕ
Cлайд 15
Cлайд 16
Архимедовыми телами называются полуправильные, однородные выпуклые многогранн... Архимедовыми телами называются полуправильные, однородные выпуклые многогранники, т.е. выпуклые многогранники, все многогранные углы которых равны, а грани -- правильные многоугольники нескольких типов ( этим они отличаются от Платоновых тел, грани которых правильные многоугольники одного типа). Открытие четырнадцати полуправильных многогранников приписывается Архимеду ( 287-212 г. до н.э. ), который впервые перечислил их свойства в не дошедшей до нас работе. Ссылки на эту работу имеются в трудах математика Паппа. Теорией этих тел занимался также Кеплер.
Cлайд 17
Архимедовы тела Архимедовы тела
Cлайд 18
Из нижеприведенного рисунка видно получение усеченного икосаэдра из платонова... Из нижеприведенного рисунка видно получение усеченного икосаэдра из платонова икосаэдра отсечением у каждой вершины 12 частей плоскостью.       СОДЕРЖАНИЕ
Cлайд 19
Оригинальный способ пространственного изображения усечённого икосаэдра предло... Оригинальный способ пространственного изображения усечённого икосаэдра предложил Леонардо да Винчи.   Изображение усечённого икосаэдра мы можем встретить в иллюстрированной Леонардо книге его современника, францисканского монаха и математика Луки Пачоли (1445-1514) «Божественная пропорция» («De Devina Proportione»), изданной в 1509 г. Титан Возрождения, живописец, скульптор, ученый и изобретатель Леонардо да Винчи (1452-1519) — символ неразрывности искусства и науки, а следовательно, закономерен его интерес к таким прекрасным, высокосимметричным объектам, как выпуклые многогранники вообще и усеченный икосаэдр в частности.
Cлайд 20
. Геометрия кисти Леонардо. Поистине, живопись — наука и законная дочь природ... . Геометрия кисти Леонардо. Поистине, живопись — наука и законная дочь природы, ибо она порождена природой.
Cлайд 21
Гравюру с изображением усеченного икосаэдра Леонардо предваряет надписью по л... Гравюру с изображением усеченного икосаэдра Леонардо предваряет надписью по латыни Ycocedron Abscisus (усеченный икосаэдр) Vacuus. Термин Vacuus обозначает тот факт, что грани многогранника изображены «пустыми» — не сплошными. Строго говоря, грани не изображаются вовсе, они существуют только в нашем воображении. Зато ребра многогранника изображены не геометрическими линиями (которые, как известно, не имеют ни ширины, ни толщины), а жесткими трехмерными сегментами. Обе эти особенности данной гравюры и составляют основу способа пространственного изображения многогранников, изобретенного Леонардо для иллюстрации книги Луки Пачоли и называемого сегодня методом жестких (или сплошных) ребер. Такая техника позволяет зрителю, во-первых, безошибочно определить, какие из ребер принадлежат передним, а какие — задним граням многогранника (что практически невозможно при изображении ребер геометрическими линиями), и, во-вторых, взглянуть как бы сквозь геометрическое тело, ощутить его в перспективе, глубине, которые теряются при использовании техники сплошных граней.
Cлайд 22
Изображения Леонардо да Винчи додекаэдра методом жёстких рёбер (а) и методом ... Изображения Леонардо да Винчи додекаэдра методом жёстких рёбер (а) и методом сплошных граней (б) в книге Луки Пачоли «Божественные пропорции». СОДЕРЖАНИЕ
Скачать эту презентацию
Наверх