«НЕСТАНДАРТНЫЕ ПРИЕМЫ РЕШЕНИЯ КВАДРАТНЫХ УРАВНЕНИЙ».
Cлайд 2
Перечень тем сообщений. Как решали квадратные уравнения в древности. Общие методы решения квадратных уравнений. Специальные методы решения квадратных уравнений. Использование свойства коэффициентов квадратного уравнения. Метод «переброски» старшего коэффициента. Графический способ решения квадратных уравнений.
Cлайд 3
«Человеку, изучающему алгебру, часто полезнее решить одну и ту же задачу различными способами, чем решать три-четыре различные задачи. Решая одну задачу различными способами, можно путем сравнения выяснить, какой из них короче и эффективнее. Так вырабатывается опыт». У. У. Сойер.
Мухаммед Бен Муса Аль-Хорезми х2 + 10х= 39, х2 + 10х + 25 = 39 + 25, (х + 5)2 = 64, х + 5 = 8, х = 3. (787-ок.850)
Cлайд 6
Методы решения квадратных уравнений излагались в вавилонских рукописях царя Хаммурапи (XX в. до н. э.), в древних китайских и японских трактатах, в трудах древнегреческого математика Евклида (III в. до н.э.)
Cлайд 7
В III в. н. э. квадратное уравнение х2 – 20х + 96 = 0 без обращения к геометрии решил великий древнегреческий математик Диофант. Диофант (III в.)
Cлайд 8
Как решали уравнения в древности
Cлайд 9
Именно с 1591 г. мы пользуемся формулами при решении квадратных уравнений. В 1591 г. Ф. Виет вывел формулы, выражающие зависимость корней квадратного уравнения от его коэффициентов и сформулировал свою знаменитую теорему
Cлайд 10
Cлайд 11
Cлайд 12
Cлайд 13
Графический способ решения квадратных уравнений
Cлайд 14
Cлайд 15
Решение квадратных уравнений с применением циркуля и линейки Корни квадратного уравнения ах2 + bх + с = 0 (а ≠ 0) можно рассматривать как абсциссы точек пересечения окружности с центром Q (- ; ), проходящей через точку A(О; 1), и оси Ох .
Cлайд 16
1) если QA > , то окружность пересекает ось Ох в двух точках М(х1; 0) и N(х2; 0) уравнение имеет корни х1 ; х2;
Cлайд 17
2) если QA = , то окружность касается оси Ох в точке М(х1; 0), уравнение имеет корень х1.
Cлайд 18
если QA < , то окружность не имеет общих точек с осью Ох, у уравнения нет корней.