Код презентации скопируйте его
 Министерство образования Российской Федерации. Выполнил: Патрушев Александр Ученик 11 «А» класса. Руководитель: Чеппе Инесса Валентиновна – учитель высшей квалификационной Категории. М О У «Средняя общеобразовательная школа № 81» Научно – практическая работа по теме: «Тетраэдр, виды сечений и решение задач по тетраэдру» Новокузнецк 2009г.
    
    Министерство образования Российской Федерации. Выполнил: Патрушев Александр Ученик 11 «А» класса. Руководитель: Чеппе Инесса Валентиновна – учитель высшей квалификационной Категории. М О У «Средняя общеобразовательная школа № 81» Научно – практическая работа по теме: «Тетраэдр, виды сечений и решение задач по тетраэдру» Новокузнецк 2009г.
 Цель работы: Выяснить какие виды сечений тетраэдра существуют Терминология Показать на примерах решения задач тетраэдра
    
    Цель работы: Выяснить какие виды сечений тетраэдра существуют Терминология Показать на примерах решения задач тетраэдра
 Терминология: Тетраэдр – поверхность, составленная из четырех треугольников Сечение – многоугольник, образованный при пересечении граней тетраэдра секущей плоскостью, сторонами которого являются отрезки по которым они пересекаются.
    
    Терминология: Тетраэдр – поверхность, составленная из четырех треугольников Сечение – многоугольник, образованный при пересечении граней тетраэдра секущей плоскостью, сторонами которого являются отрезки по которым они пересекаются.
 Геометрическое утверждение Если две точки одной прямой лежат в плоскости, то и вся прямая лежит в этой плоскости.
    
    Геометрическое утверждение Если две точки одной прямой лежат в плоскости, то и вся прямая лежит в этой плоскости.
 Задача №1 Назовите все пары скрещивающихся (т.е.принадлежащих скрещивающимся прямым) ребер тетраэдра ABCD. Сколько таких пар ребер имеет тетраэдр?
    
    Задача №1 Назовите все пары скрещивающихся (т.е.принадлежащих скрещивающимся прямым) ребер тетраэдра ABCD. Сколько таких пар ребер имеет тетраэдр?
 Задача №2 Точки М и N – середины ребер AB и BC тетраэдра ABCD. Докажите, что прямая MN параллельна плоскости BCD.
    
    Задача №2 Точки М и N – середины ребер AB и BC тетраэдра ABCD. Докажите, что прямая MN параллельна плоскости BCD.
 Решение: MN параллельны прямой, лежащей в плоскости BCD (прямой BC), поэтому она параллельна всей плоскости. A C B D M N
    
    Решение: MN параллельны прямой, лежащей в плоскости BCD (прямой BC), поэтому она параллельна всей плоскости. A C B D M N
 Задача №3 Через середины ребер AB и BC тетраэдра SABC проведена плоскость параллельно ребру SB. Докажите , что эта плоскость пересекает грани SAB и SBC по параллельным прямым.
    
    Задача №3 Через середины ребер AB и BC тетраэдра SABC проведена плоскость параллельно ребру SB. Докажите , что эта плоскость пересекает грани SAB и SBC по параллельным прямым.
 Решение: Плоскость SBC и плоскость, проходящая через прямую MN параллельно ребру SB, пересекаются по прямой, проходящей через точку N. По теореме линия пересечения параллельна SB. В плоскости SBC через т.N проходит NQ SB. Плоскость SAB и плоскость MNQ пересекаются по прямой, проходящей через т. М(прямая MP). По теореме линия пересечения параллельна SB. PM SB NQ SB PM NQ. Утверждение доказано. S B C N A P Q M
    
    Решение: Плоскость SBC и плоскость, проходящая через прямую MN параллельно ребру SB, пересекаются по прямой, проходящей через точку N. По теореме линия пересечения параллельна SB. В плоскости SBC через т.N проходит NQ SB. Плоскость SAB и плоскость MNQ пересекаются по прямой, проходящей через т. М(прямая MP). По теореме линия пересечения параллельна SB. PM SB NQ SB PM NQ. Утверждение доказано. S B C N A P Q M