Глава 9. Элементы математической статистики, комбинаторики и теории вероятностей §53. Формула бинома Ньютона
Cлайд 2
Содержание Введение Проанализируем полученные формулы Предположение Доказательство формулы Биномиальные коэффициенты Пример Свойство биномиальных коэффициентов Для учителя Источники 08.02.2014 Цыбикова Тамара Раднажаповна, учитель математики * Цыбикова Тамара Раднажаповна, учитель математики
Cлайд 3
Введение 08.02.2014 * Цыбикова Тамара Раднажаповна, учитель математики Цыбикова Тамара Раднажаповна, учитель математики
Cлайд 4
Проанализируем полученные формулы 08.02.2014 Цыбикова Тамара Раднажаповна, учитель математики * Цыбикова Тамара Раднажаповна, учитель математики
Cлайд 5
Предположение 08.02.2014 Цыбикова Тамара Раднажаповна, учитель математики * Цыбикова Тамара Раднажаповна, учитель математики
Cлайд 6
Доказательство формулы Рассмотрим произведение n двучленов (а + b)(а + b)(а + b)•...• (а + b) и докажем, что коэффициент при одночлене an-kbk равен . В самом деле, чтобы, раскрыв скобки, получить одночлен вида an-kbk, нужно из n множителей вида (а + b) выбрать k множителей (порядок не важен), откуда берется переменная b; тогда автоматически из оставшихся n-k множителей будет взята переменная а. Но выбрать k множителей из n имеющихся без учета порядка можно способами, что и требовалось доказать. • 08.02.2014 Цыбикова Тамара Раднажаповна, учитель математики * Цыбикова Тамара Раднажаповна, учитель математики
Cлайд 7
Биномиальные коэффициенты Формулу (1) обычно называют формулой бинома Ньютона (бином — двучлен), а коэффициенты биномиальными коэффициентами. 08.02.2014 Цыбикова Тамара Раднажаповна, учитель математики * Цыбикова Тамара Раднажаповна, учитель математики
Cлайд 8
Пример Раскрыть скобки в выражении: а) (x + 1)6; б) (а2 - 2b)5. Решение: а) Применим формулу (1), считая, что а = x, b= 1, n = 6. Получим: 08.02.2014 Цыбикова Тамара Раднажаповна, учитель математики * Цыбикова Тамара Раднажаповна, учитель математики
Cлайд 9
08.02.2014 Цыбикова Тамара Раднажаповна, учитель математики * Цыбикова Тамара Раднажаповна, учитель математики
Cлайд 10
Свойство биномиальных коэффициентов В заключение получим одно любопытное свойство биномиальных коэффициентов. Составим формулу бинома Ньютона для выражения (х + 1)n (подобно тому, как в рассмотренном примере мы применили формулу бинома Ньютона к выражению (х + I)6). Получим: 08.02.2014 Цыбикова Тамара Раднажаповна, учитель математики * Цыбикова Тамара Раднажаповна, учитель математики
Cлайд 11
Для учителя 08.02.2014 Цыбикова Тамара Раднажаповна, учитель математики * Цыбикова Тамара Раднажаповна, учитель математики
Cлайд 12
08.02.2014 Цыбикова Тамара Раднажаповна, учитель математики * Цыбикова Тамара Раднажаповна, учитель математики
Cлайд 13
Источники Алгебра и начала анализа, 10-11 классы, Часть 1. Учебник, 10-е изд. (Базовый уровень), А.Г.Мордкович, М., 2009 Алгебра и начала анализа, 10-11 классы. (Базовый уровень) Методическое пособие для учителя, А.Г.Мордкович, П.В.Семенов, М., 2010 Таблицы составлены в MS Word и MS Excel. Интернет-ресурсы Цыбикова Тамара Раднажаповна, учитель математики 08.02.2014 * Цыбикова Тамара Раднажаповна, учитель математики