РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ Учитель: Копеина Наталья Васильевна 10 класс МОУ «Киришский лицей»
Cлайд 2
Содержание. Вводная часть, повторение теоретического материала. Решение тригонометрических уравнений. Проблемы, возникающие при решении тригонометрических уравнений.
Cлайд 3
ЦЕЛЬ: Повторить решение тригонометрических уравнений. 1. Знать формулы для решения простейших тригонометрических уравнений. 2. Различать типы тригонометрических уравнений и знать способы их решений. 3. Уметь решать тригонометрические уравнения любых типов. Выделение основных проблем при решении этих уравнений: Потеря корней. Посторонние корни. Отбор корней.
Арккосинус 0 π 1 -1 arccos(-а) Арккосинусом числа а называется такое число (угол) t из [0;π], что cos t = а. Причём, | а |≤ 1. arccos(- а) = π- arccos а Примеры: 1)arccos(-1) = π 2)arccos( )
Cлайд 8
Арксинус Примеры: а - а arcsin(- а)= - arcsin а Арксинусом числа а называется такое число (угол) t из [-π/2;π/2], что sin t = а. Причём, | а |≤ 1.
Cлайд 9
Арктангенс 0 arctgа = t Арктангенсом числа а называется такое число (угол) t из (-π/2;π/2), что tg t = а . Причём, а Є R. arctg(-а) = - arctg а -а arctg(-а ) Примеры: 1) arctg√3/3 = π/6 2) arctg(-1) = -π/4
Cлайд 10
Арккотангенс у х 0 π arcctg а = t Арккотангенсом числа а называется такое число (угол) t из (0;π), что ctg t = а. Причём, а ЄR . arcctg(- а) = π – arcctg а - а arcctg(- а) 1) arcctg(-1) = Примеры: 3π/4 2) arcctg√3 = π/6
Cлайд 11
Повторение 1 вариант sin (-π/3) cos 2π/3 tg π/6 ctg π/4 cos (-π/6) sin 3π/4 arcsin √2/2 arccos 1 arcsin (- 1/2 ) arccos (- √3/2) arctg √3 2 вариант cos (-π/4 ) sin π/3 ctg π/6 tg π/4 sin (-π/6) cos 5π/6 arccos √2/2 arcsin 1 arccos (- 1/2) arcsin (- √3/2) arctg √3/3
Формулы корней простейших тригонометрических уравнений 1.cost = а , где |а| ≤ 1 или Частные случаи 1) cost=0 t = π/2+πk‚ kЄZ 2) cost=1 t = 2πk‚ kЄZ 3) cost = -1 t = π+2πk‚ kЄZ
Cлайд 14
Формулы корней простейших тригонометрических уравнений 2. sint = а, где | а |≤ 1 или Частные случаи 1) sint=0 t = πk‚ kЄZ 2) sint=1 t = π/2+2πk‚ kЄZ 3) sint = - 1 t = - π/2+2πk‚ kЄZ
Cлайд 15
Формулы корней простейших тригонометрических уравнений 3. tgt = а, аЄR t = arctg а + πk‚ k ЄZ 4. ctgt = а, а ЄR t = arcctg а + πk‚ kЄZ
Cлайд 16
При каких значениях х имеет смысл выражение: 1.arcsin(2x+1) 2.arccos(5-2x) 3.arccos(x²-1) 4.arcsin(4x²-3x) 1) -1≤ 2х+1 ≤1 -2≤ 2х ≤0 -1≤ х ≤0 Ответ: [-1;0] 2) -1≤ 5-2х ≤1 -6≤ -2х ≤ -4 2≤ х ≤3 Ответ: [2;3]
Cлайд 17
Примеры: cost= - ; 2) sint = 0; 3) tgt = 1; t= ±arccos(-1/2)+2πk, kЄZ t= ± + 2πk, kЄZ Частный случай: t = πk, kЄZ t = arctg1+πk, kЄZ t = + πk, kЄZ.
Виды тригонометрических уравнений 1.Сводимые к квадратным Решаются методом введения новой переменной a∙sin²x + b∙sinx + c=0 Пусть sinx = p, где |p| ≤1, тогда a∙p² + b∙p + c = 0 Найти корни, вернуться к замене и решить простые уравнения.
Cлайд 20
2.Однородные 1)Первой степени: Решаются делением на cos х (или sinx) и методом введения новой переменной. a∙sinx + b∙cosx = 0 Т.к. sinx и cosx одновременно не равны нулю, то разделим обе части уравнения на cosx (или на sinx). Получим: простое уравнение a∙tgx + b = 0 или tgx = m Виды тригонометрических уравнений Пример. Решите уравнение sinx + 2cosx = 0. Решение: Разделим обе части уравнения на cosx. Получим Ответ:
Cлайд 21
2) Однородные уравнения второй степени: Решаются делением на cos² х (или sin²x) и методом введения новой переменной. a∙sin²x + b∙sinx∙cosx + c∙cos²x = 0 Разделим обе части на cos²x. Получим квадратное уравнение: a∙tg²x + b∙tgx + c = 0. Виды тригонометрических уравнений П р и м е р . Решить уравнение: 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2. Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x , sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 , tg2 x + 4 tg x + 3 = 0 , отсюда y 2 + 4y +3 = 0 , корни этого уравнения: y1 = -1, y2 = -3, отсюда 1) tg x = –1, 2) tg x = –3, Ответ:
Cлайд 22
Виды тригонометрических уравнений 3. Уравнение вида: А sinx + B cosx = C. А, В, С 0 sin x + cos x = 1 . Р е ш е н и е . Перенесём все члены уравнения влево: sin x + cos x – 1 = 0 ,
Cлайд 23
Виды тригонометрических уравнений 4. Решение тригонометрических уравнений с помощью универсальной тригонометрической подстановки Решаются с помощью введения вспомогательного аргумента. А sinx + B cosx = C
Cлайд 24
Формулы. Универсальная подстановка. х + 2 n; Проверка обязательна! Понижение степени. = (1 + cos2x ) : 2 = (1 – cos 2x) : 2 Метод вспомогательного аргумента.
Cлайд 25
Правила. Увидел квадрат – понижай степень. Увидел произведение – делай сумму. Увидел сумму – делай произведение.
Cлайд 26
1.Потеря корней: делим на g(х). опасные формулы (универсальная подстановка). Этими операциями мы сужаем область определения. 2. Лишние корни: возводим в четную степень. умножаем на g(х) (избавляемся от знаменателя). Этими операциями мы расширяем область определения. Потеря корней, лишние корни.
Cлайд 27
Решение тригонометрических уравнений по известным алгоритмам Вариант 1. На «3» 3 sin x+ 5 cos x = 0 5 sin2 х - 3 sinх cos х - 2 cos2х =0 На «4» 3 cos2х + 2 sin х cos х =0 5 sin2 х + 2 sinх cos х - cos2х =1 На «5» 2 sin x - 5 cos x = 3 1- 4 sin 2x + 6 cos2х = 0 Вариант 2. На «3» cos x+ 3 sin x = 0 6 sin2 х - 5 sinх cos х + cos2х =0 На «4» 2 sin2 x – sin x cosx =0 4 sin2 х - 2sinх cos х – 4 cos2х =1 На «5» 2 sin x - 3 cos x = 4 2 sin2 х - 2sin 2х +1 =0