Код презентации скопируйте его
Логика –это наука о формах и способах мышления;особая форма мышления. Понятие - это форма мышления, фиксирующая основные, существенные признаки объекта. Высказывание – форма мышления, в которой что-либо утверждается или отрицается о свойствах реальных предметов и отношениях между ними. Высказывание может быть либо истинно, либо ложно.
Логика Высказывания: Истинные(1) и ложные (0); Простые и сложные; Общие, частные и единичные.
Высказывания. Высказывания бывают общими, частными или единичными. Общее высказывание начинается (или можно начать) со слов: все, всякий, каждый, ни один. Частное высказывание начинается ( или можно начать) со слов: некоторые, большинство и т.п. Во всех других случаях высказывание является единичным.
Примеры высказываний: Пример 1. Определить тип высказывания (общее, частное, единичное). «Все рыбы умеют плавать». Ответ: общее высказывание. «Некоторые медведи -бурые». Ответ: частное высказывание. «Буква А – гласная». Ответ: единичное высказывание.
Примеры высказываний: Пример 2. Из двух простых высказываний постройте сложное высказывание, используя логические связки «И», «ИЛИ»: Все ученики изучают математику. Все ученики изучают литературу. Все ученики изучают математику и литературу.
Алгебра высказываний Логическое умножение (конъюнкция) Операцию логического умножения (конъюнкция) принято обозначать «&» либо « ». F=A&B.
Логическое сложение Дизъюнкция Истинно тогда, когда истинно хотя бы одно из входящих в него простых высказываний. F=A B
Логическое отрицание. Инверсия Делает истинное высказывание ложным и, наоборот, ложное – истинным. Таблица истинности логического отрицания.
Логические законы и правила преобразования логических выражений. Закон тождества. Всякое высказывание тождественно самому себе. Закон непротиворечия. А=А А& =0
Логические законы и правила преобразования логических выражений. Закон исключения третьего. Закон двойного отрицания. Закон де Моргана. А =1
Логические законы и правила преобразования логических выражений. Закон коммутативности. В алгебре высказываний можно менять местами логические переменные при операциях логического умножения и логического сложения:
Логические законы и правила преобразования логических выражений. Закон ассоциативности. Если в логическом выражении используются только операция логического умножения или только операция логического сложения, то можно пренебрегать скобками или произвольно их расставлять:
Логические законы и правила преобразования логических выражений Закон дистрибутивности. В алгебре высказываний можно выносить за скобки как общие множители, так и общие слагаемые:
Логические основы устройства компьютера Базовые логические элементы. Логический элемент «И» - логическое умножение. Логический элемент «ИЛИ» - логическое сложение. Логический элемент «НЕ» - инверсия.
Логический элемент «И». Логический элемент «И». На входы А и В логического элемента подаются два сигнала (00, 01, 10 или 11). На выходе получается сигнал 0 или 1 в соответствии с таблицей истинности операции логического умножения. И А (0,0,1,1) F (0,0,0,1) В (0,1,0,1)
Логический элемент «ИЛИ». На входы А и В логического элемента подаются два сигнала (00, 01, 10 или 11). На входе получается сигнал 0 или 1 в соответствии с таблицей истинности операции логического сложения. ИЛИ А (0,0,1,1) F (0,1,1,1) В (0,1,0,1)
Логический элемент «НЕ» На вход А логического элемента подается сигнал 0 или 1. На входе получается сигнал 0 или 1 в соответствии с таблицей истинности инверсии. НЕ А (0,1) F (1,0)
Сумматор двоичных чисел. Полусумматор. Вспомним, что при сложении двоичных чисел в каждом разряде образуется сумма и при этом возможен перенос в старший разряд.
Полный однозарядный сумматор. Полный однозарядный сумматор должен иметь три входа: А,В- слагаемые и Р0 – перенос из младшего разряда и два выхода: сумму S и перенос Р. Идея построения полного сумматора точно такая же, как и полусумматора. Перенос реализуется путем логического сложения результатов попарного логического умножения входных переменных. Формула переноса получает следующий вид: