X

Код презентации скопируйте его

Ширина px

Вы можете изменить размер презентации, указав свою ширину плеера!

Призма 9 класс

Скачать эту презентацию

Презентация на тему Призма 9 класс

Скачать эту презентацию

Cлайд 1
Призма Призма
Cлайд 2
Определение призмы: А1А2…АnВ1В2Вn– призма Многоугольники А1А2…Аn и В1В2…Вn – ... Определение призмы: А1А2…АnВ1В2Вn– призма Многоугольники А1А2…Аn и В1В2…Вn – основания призмы Параллелограммы А1А2В2В1, А1А2В2В1,… АnА1В1Вn – боковые грани Отрезки А1В1, А2В2…АnBn – боковые ребра призмы
Cлайд 3
Виды призм Шестиугольная Треугольная Четырехугольная призма призма призма Виды призм Шестиугольная Треугольная Четырехугольная призма призма призма
Cлайд 4
Наклонная и прямая призма Если боковые ребра призмы перпендикулярны основания... Наклонная и прямая призма Если боковые ребра призмы перпендикулярны основаниям то призма называется прямой, в противном случае – наклонной.
Cлайд 5
Правильная призма Призма называется правильной, если она прямая и ее основани... Правильная призма Призма называется правильной, если она прямая и ее основания - правильные многоугольники.
Cлайд 6
Площадь полной поверхности призмы Площадь полной поверхности призмы
Cлайд 7
Площадь боковой поверхности призмы Теорема Площадь боковой поверхности прямой... Площадь боковой поверхности призмы Теорема Площадь боковой поверхности прямой призмы равна половине произведения периметра основания на высоту призмы.
Cлайд 8
Объем наклонной призмы Теорема Объем наклонной призмы равен произведению площ... Объем наклонной призмы Теорема Объем наклонной призмы равен произведению площади основания на высоту.
Cлайд 9
Доказательство Докажем сначала теорему для треугольной призмы, а затем — для ... Доказательство Докажем сначала теорему для треугольной призмы, а затем — для произвольной призмы. 1. Рассмотрим треугольную призму с объ емом V, площадью основания S и высотой h. Отметим точку О на одном из оснований призмы и направим ось Ох перпендикулярно к основаниям. Рассмотрим сечение призмы плоскостью, перпендикуляр ной к оси Ох и, значит, параллельной плоскости основания. Обозначим буквой х абсциссу точки пересе чения этой плоскости с осью Ох, а через S (х) — площадь получившегося сечения. Докажем, что площадь S (х) равна площади S основания призмы. Для этого заметим, что треуголь ники ABC (основание призмы) и А1B1С1 (сечение призмы рассматриваемой плоскостью) равны. В самом деле, четырехугольник АA1BB1 — параллелограмм (отрезки АА1 и ВВ1 равны и параллельны), поэтому А1В1=АВ. Аналогично доказывается, что В1С1=ВС и А1С1=АС. Итак, треугольники А1В1С1 и ABC равны по трем сторонам. Следовательно, S(x)=S. Применяя теперь основную формулу для вычисления объемов тел при а=0 и b=h, получаем
Cлайд 10
2. Докажем теперь теорему для произвольной призмы с высотой h и площадью осно... 2. Докажем теперь теорему для произвольной призмы с высотой h и площадью основания S. Такую призму можно разбить на треугольные призмы с общей высотой h. Выразим объем каждой треуголь ной призмы по доказанной нами формуле и сложим эти объемы. Вынося за скобки общий множитель h, получим в скобках сумму площадей оснований треугольных призм, т. е. площадь S основания исходной призмы. Таким образом, объем исходной призмы равен S * h. Теорема доказана.
Скачать эту презентацию
Наверх