X

Код презентации скопируйте его

Ширина px

Вы можете изменить размер презентации, указав свою ширину плеера!

Определение вероятности

Скачать эту презентацию

Презентация на тему Определение вероятности

Скачать эту презентацию
Cлайд 1
Определение вероятности Классическое и статистическое определение вероятности Определение вероятности Классическое и статистическое определение вероятности
Cлайд 2
Классическое и статистическое определение вероятности При классическом опреде... Классическое и статистическое определение вероятности При классическом определении вероятность события определяется равенством Р(А) = m/n, где m – число элементарных исходов испытания, благоприятствующих появлению события А; n - общее число возможных элементарных исходов испытания. Предполагается, что элементарные исходы образуют полную группу и равновозможны. Относительная частота события А определяется равенством W(A)=m/n, где m - число испытаний, в которых событие А наступило; n - общее число произведённых испытаний. При статистическом определении в качестве вероятности события принимают его относительную частоту.
Cлайд 3
Задача 1 Брошены две игральные кости. Найти вероятность , что сумма очков на ... Задача 1 Брошены две игральные кости. Найти вероятность , что сумма очков на выпавших гранях – чётная, причём на грани хотя бы одной из костей появится шестёрка. Решение. На выпавшей грани «первой» игральной кости может появиться одно очко, два очка, …, шесть очков. Аналогичные шесть элементарных исходов возможны при бросании «второй» кости. Каждый из исходов бросания «первой» кости может сочетаться с каждым из исходов бросания «второй». Таким образом, общее число возможных элементарных исходов испытания равно 6 * 6 = 36. Эти исходы образуют полную группу и в силу симметрии костей равновозможны.
Cлайд 4
Продолжение задачи 1 Благоприятствующими интересующему нас событию ( хотя бы ... Продолжение задачи 1 Благоприятствующими интересующему нас событию ( хотя бы на одной грани появится шестёрка, сумма выпавших очков - чётная) являются следующие пять исходов ( первым записано число очков, выпавших на «первой» кости, вторым – число очков, выпавших на «второй» кости; далее найдена сумма очков): 1)6, 2; 6+2=8, 2) 6,4; 6+4=10, 3) 6, 6; 6+6=12, 4) 2, 6; 2+6=8, 5) 4, 6; 4+6=10. Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех возможных элементарных исходов: Р = 5/36. Ответ: 5/36.
Cлайд 5
Задача 2 При перевозке ящика, в котором содержались 21 стандартная и 10 неста... Задача 2 При перевозке ящика, в котором содержались 21 стандартная и 10 нестандартных деталей, утеряна одна деталь, причем неизвестно какая. На удачу извлеченная (после перевозки) из ящика деталь оказалась стандартной. Найти вероятность того, что была утеряна: а) стандартная деталь; б) нестандартная деталь.
Cлайд 6
Решение а) извлеченная стандартная деталь, очевидно, не могла быть утеряна; м... Решение а) извлеченная стандартная деталь, очевидно, не могла быть утеряна; могла быть потеряна любая из остальных 30 деталей (21+10-1=30), причем среди них было 20 стандартных (21-1=20). Вероятность того, что была потеряна стандартная деталь, Р=20/30=2/3. б) среди 30 деталей, каждая из которых могла быть утеряна, было 10 нестандартных. Вероятность того, что была потеряна нестандартная деталь, Р=10/30=1/3.
Скачать эту презентацию
Наверх