X

Код презентации скопируйте его

Ширина px

Вы можете изменить размер презентации, указав свою ширину плеера!

Решение тригонометрических уравнений (10 класс)

Скачать эту презентацию

Презентация на тему Решение тригонометрических уравнений (10 класс)

Скачать эту презентацию
Cлайд 1
РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ Учитель: Копеина Наталья Васильевна 10 к... РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ Учитель: Копеина Наталья Васильевна 10 класс МОУ «Киришский лицей»
Cлайд 2
Содержание. Вводная часть, повторение теоретического материала. Решение триго... Содержание. Вводная часть, повторение теоретического материала. Решение тригонометрических уравнений. Проблемы, возникающие при решении тригонометрических уравнений.
Cлайд 3
ЦЕЛЬ: Повторить решение тригонометрических уравнений. 1. Знать формулы для ре... ЦЕЛЬ: Повторить решение тригонометрических уравнений. 1. Знать формулы для решения простейших тригонометрических уравнений. 2. Различать типы тригонометрических уравнений и знать способы их решений. 3. Уметь решать тригонометрические уравнения любых типов. Выделение основных проблем при решении этих уравнений: Потеря корней. Посторонние корни. Отбор корней.
Cлайд 4
Устная работа. Решите уравнения А) 3 х – 5 = 7 Б) х2 – 8 х + 15 = 0 В) 4 х2 –... Устная работа. Решите уравнения А) 3 х – 5 = 7 Б) х2 – 8 х + 15 = 0 В) 4 х2 – 4 х + 1= 0 Г) х4 – 5 х2 + 4 = 0 Д) 3 х2 – 12 = 0 Ответы 4 3; 5 0,5 -2; -1; 1; 2 -2; 2
Cлайд 5
Устная работа Упростите выражения А) (sin a – 1) (sin a + 1) Б) sin2 a – 1 + ... Устная работа Упростите выражения А) (sin a – 1) (sin a + 1) Б) sin2 a – 1 + cos2 a В) sin2 a + tg a ctg a + cos2 a Г) Ответы - cos2 a 0 2 |1- tg х|
Cлайд 6
Повторим значения синуса и косинуса у π/2 90° 1 120° 2π/3 π/3 60° 135° 3π/4 π... Повторим значения синуса и косинуса у π/2 90° 1 120° 2π/3 π/3 60° 135° 3π/4 π/4 45° 150° 5π/6 1/2 π/6 30° 180° π -1 0 1 0 0° x -1/2 ½ 2π 360 (cost) 210° 7π/6 -1/2 11π/6 330° [-π/6] 225° 5π/4 7π/4 315° [-π/4] 240° 4π/3 5π/3 300° [-π/3] -1 270° 3π/2 [-π/2] (sint)
Cлайд 7
Арккосинус 0 π 1 -1 arccos(-а) Арккосинусом числа а называется такое число (у... Арккосинус 0 π 1 -1 arccos(-а) Арккосинусом числа а называется такое число (угол) t из [0;π], что cos t = а. Причём, | а |≤ 1. arccos(- а) = π- arccos а Примеры: 1)arccos(-1) = π 2)arccos( )
Cлайд 8
Арксинус Примеры: а - а arcsin(- а)= - arcsin а Арксинусом числа а называется... Арксинус Примеры: а - а arcsin(- а)= - arcsin а Арксинусом числа а называется такое число (угол) t из [-π/2;π/2], что sin t = а. Причём, | а |≤ 1.
Cлайд 9
Арктангенс 0 arctgа = t Арктангенсом числа а называется такое число (угол) t ... Арктангенс 0 arctgа = t Арктангенсом числа а называется такое число (угол) t из (-π/2;π/2), что tg t = а . Причём, а Є R. arctg(-а) = - arctg а -а arctg(-а ) Примеры: 1) arctg√3/3 = π/6 2) arctg(-1) = -π/4
Cлайд 10
Арккотангенс у х 0 π arcctg а = t Арккотангенсом числа а называется такое чис... Арккотангенс у х 0 π arcctg а = t Арккотангенсом числа а называется такое число (угол) t из (0;π), что ctg t = а. Причём, а ЄR . arcctg(- а) = π – arcctg а - а arcctg(- а) 1) arcctg(-1) = Примеры: 3π/4 2) arcctg√3 = π/6
Cлайд 11
Повторение 1 вариант sin (-π/3) cos 2π/3 tg π/6 ctg π/4 cos (-π/6) sin 3π/4 a... Повторение 1 вариант sin (-π/3) cos 2π/3 tg π/6 ctg π/4 cos (-π/6) sin 3π/4 arcsin √2/2 arccos 1 arcsin (- 1/2 ) arccos (- √3/2) arctg √3 2 вариант cos (-π/4 ) sin π/3 ctg π/6 tg π/4 sin (-π/6) cos 5π/6 arccos √2/2 arcsin 1 arccos (- 1/2) arcsin (- √3/2) arctg √3/3
Cлайд 12
Повторение Ответы 1 вариант - √3/2 - 1/2 √3/3 1 √3/2 √2/2 π/4 0 - π/6 5π/6 π/... Повторение Ответы 1 вариант - √3/2 - 1/2 √3/3 1 √3/2 √2/2 π/4 0 - π/6 5π/6 π/3 Ответы 2 вариант √2/2 √3/2 √3 1 - 1/2 - √3/2 π/4 π/2 2π/3 - π/3 π/6
Cлайд 13
Формулы корней простейших тригонометрических уравнений 1.cost = а , где |а| ≤... Формулы корней простейших тригонометрических уравнений 1.cost = а , где |а| ≤ 1 или Частные случаи 1) cost=0 t = π/2+πk‚ kЄZ 2) cost=1 t = 2πk‚ kЄZ 3) cost = -1 t = π+2πk‚ kЄZ
Cлайд 14
Формулы корней простейших тригонометрических уравнений 2. sint = а, где | а |... Формулы корней простейших тригонометрических уравнений 2. sint = а, где | а |≤ 1 или Частные случаи 1) sint=0 t = πk‚ kЄZ 2) sint=1 t = π/2+2πk‚ kЄZ 3) sint = - 1 t = - π/2+2πk‚ kЄZ
Cлайд 15
Формулы корней простейших тригонометрических уравнений 3. tgt = а, аЄR t = ar... Формулы корней простейших тригонометрических уравнений 3. tgt = а, аЄR t = arctg а + πk‚ k ЄZ 4. ctgt = а, а ЄR t = arcctg а + πk‚ kЄZ
Cлайд 16
При каких значениях х имеет смысл выражение: 1.arcsin(2x+1) 2.arccos(5-2x) 3.... При каких значениях х имеет смысл выражение: 1.arcsin(2x+1) 2.arccos(5-2x) 3.arccos(x²-1) 4.arcsin(4x²-3x) 1) -1≤ 2х+1 ≤1 -2≤ 2х ≤0 -1≤ х ≤0 Ответ: [-1;0] 2) -1≤ 5-2х ≤1 -6≤ -2х ≤ -4 2≤ х ≤3 Ответ: [2;3]
Cлайд 17
Примеры: cost= - ; 2) sint = 0; 3) tgt = 1; t= ±arccos(-1/2)+2πk, kЄZ t= ± + ... Примеры: cost= - ; 2) sint = 0; 3) tgt = 1; t= ±arccos(-1/2)+2πk, kЄZ t= ± + 2πk, kЄZ Частный случай: t = πk, kЄZ t = arctg1+πk, kЄZ t = + πk, kЄZ.
Cлайд 18
Решение простейших уравнений tg2x = -1 2x = arctg (-1) + πk, kЄZ 2x = -π/4 + ... Решение простейших уравнений tg2x = -1 2x = arctg (-1) + πk, kЄZ 2x = -π/4 + πk, kЄZ x = -π/8 + πk/2, kЄZ Ответ: -π/8 + πk/2, kЄZ. 2) cos(x+π/3) = ½ x+π/3 = ±arccos1/2 + 2πk, kЄZ x+π/3 = ±π/3 + 2πk, kЄZ x = -π/3 ± π/3 + 2πk, kЄZ Ответ: -π/3 ± π/3 + 2πk, kЄZ 3) sin(π – x/3) = 0 упростим по формулам приведения sin(x/3) = 0 частный случай x/3 = πk, kЄZ x = 3πk, kЄZ. Ответ: 3πk, kЄZ.
Cлайд 19
Виды тригонометрических уравнений 1.Сводимые к квадратным Решаются методом вв... Виды тригонометрических уравнений 1.Сводимые к квадратным Решаются методом введения новой переменной a∙sin²x + b∙sinx + c=0 Пусть sinx = p, где |p| ≤1, тогда a∙p² + b∙p + c = 0 Найти корни, вернуться к замене и решить простые уравнения.
Cлайд 20
2.Однородные 1)Первой степени: Решаются делением на cos х (или sinx) и методо... 2.Однородные 1)Первой степени: Решаются делением на cos х (или sinx) и методом введения новой переменной. a∙sinx + b∙cosx = 0 Т.к. sinx и cosx одновременно не равны нулю, то разделим обе части уравнения на cosx (или на sinx). Получим: простое уравнение a∙tgx + b = 0 или tgx = m Виды тригонометрических уравнений Пример. Решите уравнение sinx + 2cosx = 0. Решение: Разделим обе части уравнения на cosx. Получим Ответ:
Cлайд 21
2) Однородные уравнения второй степени: Решаются делением на cos² х (или sin²... 2) Однородные уравнения второй степени: Решаются делением на cos² х (или sin²x) и методом введения новой переменной. a∙sin²x + b∙sinx∙cosx + c∙cos²x = 0 Разделим обе части на cos²x. Получим квадратное уравнение: a∙tg²x + b∙tgx + c = 0. Виды тригонометрических уравнений П р и м е р .   Решить уравнение:  3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.      Р е ш е н и е .  3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,                                sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,                                tg2 x + 4 tg x + 3 = 0 ,  отсюда  y 2 + 4y +3 = 0 ,                                корни этого уравнения:  y1 = -1,  y2 = -3,  отсюда                            1)   tg x = –1,  2)   tg x = –3, Ответ:
Cлайд 22
Виды тригонометрических уравнений 3. Уравнение вида: А sinx + B cosx = C. А, ... Виды тригонометрических уравнений 3. Уравнение вида: А sinx + B cosx = C. А, В, С 0   sin x + cos x = 1 .     Р е ш е н и е .   Перенесём все члены уравнения влево:                        sin x + cos x – 1 = 0 ,
Cлайд 23
Виды тригонометрических уравнений 4. Решение тригонометрических уравнений с п... Виды тригонометрических уравнений 4. Решение тригонометрических уравнений с помощью универсальной тригонометрической подстановки Решаются с помощью введения вспомогательного аргумента. А sinx + B cosx = C
Cлайд 24
Формулы. Универсальная подстановка. х + 2 n; Проверка обязательна! Понижение ... Формулы. Универсальная подстановка. х + 2 n; Проверка обязательна! Понижение степени. = (1 + cos2x ) : 2 = (1 – cos 2x) : 2 Метод вспомогательного аргумента.
Cлайд 25
Правила. Увидел квадрат – понижай степень. Увидел произведение – делай сумму.... Правила. Увидел квадрат – понижай степень. Увидел произведение – делай сумму. Увидел сумму – делай произведение.
Cлайд 26
1.Потеря корней: делим на g(х). опасные формулы (универсальная подстановка). ... 1.Потеря корней: делим на g(х). опасные формулы (универсальная подстановка). Этими операциями мы сужаем область определения. 2. Лишние корни: возводим в четную степень. умножаем на g(х) (избавляемся от знаменателя). Этими операциями мы расширяем область определения. Потеря корней, лишние корни.
Cлайд 27
Решение тригонометрических уравнений по известным алгоритмам Вариант 1. На «3... Решение тригонометрических уравнений по известным алгоритмам Вариант 1. На «3» 3 sin x+ 5 cos x = 0 5 sin2 х - 3 sinх cos х - 2 cos2х =0 На «4» 3 cos2х + 2 sin х cos х =0 5 sin2 х + 2 sinх cos х - cos2х =1 На «5» 2 sin x - 5 cos x = 3 1- 4 sin 2x + 6 cos2х = 0 Вариант 2. На «3» cos x+ 3 sin x = 0 6 sin2 х - 5 sinх cos х + cos2х =0 На «4» 2 sin2 x – sin x cosx =0 4 sin2 х - 2sinх cos х – 4 cos2х =1 На «5» 2 sin x - 3 cos x = 4 2 sin2 х - 2sin 2х +1 =0
Cлайд 28
Скачать эту презентацию
Наверх