X

Код презентации скопируйте его

Ширина px

Вы можете изменить размер презентации, указав свою ширину плеера!

Геометрические задачи 7 класса в заданиях ОГЭ

Скачать эту презентацию

Презентация на тему Геометрические задачи 7 класса в заданиях ОГЭ

Скачать эту презентацию
Cлайд 1
Cлайд 2
Геометрические задачи 7 класса в вариантах ОГЭ Геометрические задачи 7 класса в вариантах ОГЭ
Cлайд 3
Цели урока: Сегодня мы с вами разберём несколько примеров по геометрии 7 клас... Цели урока: Сегодня мы с вами разберём несколько примеров по геометрии 7 класса, которые даются в ОГЭ-2015. Ведь действительно, Основной Государственный Экзамен — ОГЭ, рассчитан не только на знания 9 класса, но и на те знания, которые ученики получают в 7 и 8 классах по геометрии, и, начиная с 5 класса, по математике и алгебре. Поэтому, в модуле «Геометрия» есть задачи из курса 7 класса.
Cлайд 4
Задача 1.   В треугольнике АВС точка D на стороне АВ выбрана так, что АС=AD. ... Задача 1.   В треугольнике АВС точка D на стороне АВ выбрана так, что АС=AD. Угол А  треугольника АВС равен 16°, а угол АСВ равен 134°. Найти угол DCB.
Cлайд 5
Cлайд 6
Решение: Из треугольника ADC видно, что он равнобедренный, поскольку 2 боковы... Решение: Из треугольника ADC видно, что он равнобедренный, поскольку 2 боковые стороны его равны. А в равнобедренном треугольнике углы при основании равны. Значит, угол ADC равен углу АСВ. Но сумма внутренних углов треугольника равна 180°. Отсюда, сумма двух углов при основании равна 180-16=164°. Углы, как мы уже сказали, равны. Поэтому, каждый из них равен 164:2 = 82°. Угол АСВ по условию равен 134°. А если внутри угла провести луч, то он разделит угол на 2 угла, сумма градусных мер которых будет равна градусной мере первоначального угла. Т.е. Угол АСВ равен сумме углов АCD и DCB. Отсюда, угол DCB равен 134 — 82 = 52°. Ответ: угол DCB равен 52°.
Cлайд 7
Задача 2.  Два отрезка АС  и BD пересекают в точке О. Причём, АО=СО и ∠А=∠С. ... Задача 2.  Два отрезка АС  и BD пересекают в точке О. Причём, АО=СО и ∠А=∠С. Доказать, что треугольники АОВ и OC равны.
Cлайд 8
Cлайд 9
Доказательство: В искомых треугольниках есть по одной равной стороне и одному... Доказательство: В искомых треугольниках есть по одной равной стороне и одному равному углу. Значит, согласно признакам равенства треугольников, нам необходимо ещё либо по одной равной стороне, либо по одному равному углу. Стороны как-то не проглядываются, а вот по равному углу можно ещё найти. Углы АОВ и DOC  — вертикальные. А вертикальные углы, как мы знаем, равны. В каждом из треугольников мы имеем по равной стороне и двум равным углам, прилежащим к ней. Треугольники равны по 2 признаку.
Cлайд 10
Задача 3.  В треугольнике АВС проведена биссектриса АК.  Угол АКС равен 94°, ... Задача 3.  В треугольнике АВС проведена биссектриса АК.  Угол АКС равен 94°, а угол АВС равен 62°.  Найти угол С треугольника АВС.
Cлайд 11
Cлайд 12
Решение: Угол АКС является внешним для треугольника АВК и равным сумме двух в... Решение: Угол АКС является внешним для треугольника АВК и равным сумме двух внутренних углов, не смежных с ним, т.е. сумме углов В и ВАК. Отсюда мы можем найти угол ВАК. Он равен 94 — 62 = 32°. Поскольку АК — биссектриса угла А, то угол КАС тоже равен 32°. А теперь, рассматривая треугольник АКС и зная в нём 2 угла, можно найти третий. ∠С = 180 — 32 — 94 = 54°. Ответ: угол С равен 54°.
Cлайд 13
Задача 4. В треугольнике АВС боковые стороны АС и АВ равны между собой. Внешн... Задача 4. В треугольнике АВС боковые стороны АС и АВ равны между собой. Внешний угол при вершине В равен 110°.  Найти угол С.
Cлайд 14
Cлайд 15
Решение:  Внешний угол В равен 110°, значит, смежный с ним внутренний угол в ... Решение:  Внешний угол В равен 110°, значит, смежный с ним внутренний угол в треугольнике  равен 180-10 = 70°. Но внутренний угол В равен углу А, как углы при основании равнобедренного треугольника. Значит, угол А равен 70°. А сумма внутренних углов треугольника равна 180°. И если 2 из них равны по 70, то на долю третьего угла С приходится 180 — 70 — 70 = 40°. Ответ: угол с равен 40°.
Cлайд 16
Задача 5.  В треугольнике АВС проведены высоты, которые пересекаются в точке ... Задача 5.  В треугольнике АВС проведены высоты, которые пересекаются в точке О.  Угол СОВ равен 119°. Найти угол А.
Cлайд 17
Cлайд 18
Решение:  Угол ВОМ смежный углу СОМ и равен 180-119 = 61°. Угол СМА внешний в... Решение:  Угол ВОМ смежный углу СОМ и равен 180-119 = 61°. Угол СМА внешний в треугольнике СМВ и равен сумме двух внутренних, не смежных с ним. Отсюда, угол ОВМ равен 90-61 = 29°. А из прямоугольного треугольника ВКА можно найти угол А, т.к. сумма острых углов в прямоугольном треугольнике равна 90°. Значит, угол А равен 90 — 29 = 61°. Ответ: угол А равен 61°. 
Cлайд 19
Скачать эту презентацию
Наверх