Множество есть многое, мыслимое нами как единое Георг Кантор
Cлайд 3
Способы задания множеств: 1.Описание. Описание, включает основной, характеристический признак множества 2.Список Например, множество учеников нашего класса Бесконечные множества нельзя задавать списком
Cлайд 4
А Обозначения множеств {2, 3, 4, 5, 6, 7} круги Эйлера с b 2 5 [2;5] -3 7 [-3;7)
Cлайд 5
Примеры Множество синиц Множество воробьев
Cлайд 6
Универсальное множество П В В С П - птицы В - воробьи С - синицы
Cлайд 7
Обозначение универсального множества I А А – подмножество I А включается в I
Cлайд 8
Подмножество К Ч К - квадраты Ч - четырехугольники Добавляются еще характеристические признаки
Cлайд 9
Пустое множество Множество называется пустым, если в нем нет ни одного элемента
Cлайд 10
Дополнение множества Дополнением множества А до I будет множество, состоящее из элементов, не принадлежащих А и обозначается А
Cлайд 11
Урок 5 Действия с множествами
Cлайд 12
Действия с множествами 1.Объединением множеств А и В называется множество, состоящее из элементов, принадлежащих А или В. А В x y z r
Cлайд 13
А={2;3;4;5;7} B={3;5;8;9} 1 4 5 7
Cлайд 14
2. Пересечением множеств А и В называется множество, состоящее из элементов, принадлежащих А и В. A B x y r z
Cлайд 15
А={2;3;4;5;7} B={3;5;8;9} 1 4 5 7
Cлайд 16
Cлайд 17
, , , Разностью множеств А и В называется множество, состоящее из элементов, принадлежащих А, но не принадлежащих В если С= А\В и Неоднозначная операция если если