Решение систем неравенств (9 класс) Разработано учителем математики МОУ «СОШ» п. Аджером Корткеросского района Республики Коми Мишариной Альбиной Геннадьевной
Cлайд 2
А. Нивен
Cлайд 3
Запомним Решить систему неравенств – это значит найти значение переменной, при котором верно каждое из неравенств системы.
Cлайд 4
Запомним Если надо решить систему неравенств, то: решаем каждое неравенство системы отдельно изображаем полученные решения на числовой прямой и смотрим пересечения этих решений. Эта общая часть и является решением данной системы неравенств.
Cлайд 5
Содержание Решение систем линейных неравенств Решение двойных неравенств Решение систем, содержащих квадратные неравенства
Cлайд 6
Решим систему неравенств (состоящую из линейных неравенств) 5х + 1 > 6 2х – 4 < 3 Решение: решим каждое неравенство отдельно 5х + 1 > 6 2х – 4 < 3 5х > 6 -1 2х < 4+3 5х > 5 2х < 7 х >1 х < 3,5 1 3,5 х Ответ: (1; 3,5)
Cлайд 7
Решим систему неравенств 5х + 12 ≤ 3х+ 20 х < 2х+3 2х + 7 ≥ 0 Решение: решим каждое неравенство отдельно 5х + 12 ≤ 3х+ 20 х < 2х+3 2х + 7 ≥ 0 5х – 3х ≤ - 12 + 20 х – 2х < 3 2х ≥ -7 2х ≤ 8 -х < 3 х ≥ -7/2 х ≤ 4 х > - 3 х ≥ -3,5 Изобразим на числовой прямой: -3,5 -3 4 Ответ: ( -3; 4]
Cлайд 8
Работа в парах: Решить систему неравенств: 1) 3х – 2 ≥ х + 1 4 – 2х ≤ х – 2 2) 3х > 12 + 11х 5х – 1 ≥ 0 Проверим ответы: 1) [2; +∞) 2) Нет решения
Cлайд 9
Примеры двойных неравенств Прочитайте неравенства: -6 < х < 0 -1,2 ≤ х < 3,5 0 < х ≤ 5,9
Cлайд 10
Решение двойных неравенств Решить неравенство: 0< 4х +2 ≤ 6 Решение: составим систему: 4х + 2 > 0 4х + 2 ≤ 6 Решим каждое неравенство системы отдельно: 1) 4х + 2 > 0 2) 4х + 2 ≤ 6 х > - 0,5 х ≤ 1 Полученные результаты изобразим на числовой прямой: -0,5 1 х Ответ: -0,5 < х ≤ 1 или (-0,5; 1]