Код презентации скопируйте его
 Презентация на тему: Построение сечений многогранника. Выполнила ученица 10 класса Пименова Ксения. Учитель математики: Мазалова Лариса Сергеевна.
    
    Презентация на тему: Построение сечений многогранника. Выполнила ученица 10 класса Пименова Ксения. Учитель математики: Мазалова Лариса Сергеевна.
 Определение Если пересечением многогранника и плоскости является многоугольник, то он называется сечением многогранника указанной плоскостью
    
    Определение Если пересечением многогранника и плоскости является многоугольник, то он называется сечением многогранника указанной плоскостью
 Сечение пирамид. Пирамида – это многогранник, одна из граней которого – произвольный многоугольник. Тетраэдр - это многогранник, одна из граней которого – произвольный треугольник. Так как тетраэдр имеет четыре грани, то его сечениями могут быть только треугольники и четырехугольники.
    
    Сечение пирамид. Пирамида – это многогранник, одна из граней которого – произвольный многоугольник. Тетраэдр - это многогранник, одна из граней которого – произвольный треугольник. Так как тетраэдр имеет четыре грани, то его сечениями могут быть только треугольники и четырехугольники.
 Дано: АВСD – пирамида Точка М принадлежит грани ABD. Построить сечение, проходящее через точку М // плоскости основание.
    
    Дано: АВСD – пирамида Точка М принадлежит грани ABD. Построить сечение, проходящее через точку М // плоскости основание.
 Дано: Пирамида MABCD. Постройте сечение пирамиды, проходящее через точки P, Q, R. Известно, что точка P MB, точка R MA, Q DC. ВАЖНО! Если секущая плоскость пересекает противоположные грани, то она пересекает их по параллельным отрезкам.
    
    Дано: Пирамида MABCD. Постройте сечение пирамиды, проходящее через точки P, Q, R. Известно, что точка P MB, точка R MA, Q DC. ВАЖНО! Если секущая плоскость пересекает противоположные грани, то она пересекает их по параллельным отрезкам.
 Сечение куба Прямоугольный параллелепипед, у которого все три измерения равны, называется кубом. Куб имеет 6 граней. Его сечениями могут быть треугольники, четырехугольники, пятиугольники и шестиугольники.
    
    Сечение куба Прямоугольный параллелепипед, у которого все три измерения равны, называется кубом. Куб имеет 6 граней. Его сечениями могут быть треугольники, четырехугольники, пятиугольники и шестиугольники.
 Дано: ABCDА1B1C1D1 -куб, точка К принадлежит ребру A1В1, точка L принадлежит ребру В1C1 , точка М принадлежит ребру DC. Построить: сечение куба плоскостью.
    
    Дано: ABCDА1B1C1D1 -куб, точка К принадлежит ребру A1В1, точка L принадлежит ребру В1C1 , точка М принадлежит ребру DC. Построить: сечение куба плоскостью.
 Решение: Проведем прямую КL и отметим точки ее пересечения с продолжениями соответствующих ребер куба.
    
    Решение: Проведем прямую КL и отметим точки ее пересечения с продолжениями соответствующих ребер куба.
 Проводя аналогичным образом прямые в плоскостях других граней куба мы построим все сечение.
    
    Проводя аналогичным образом прямые в плоскостях других граней куба мы построим все сечение.
 Дано: ABCDA1B1C1D1 – куб. Точки PNKQ принадлежат ребрам. Построить сечение куба плоскостью.
    
    Дано: ABCDA1B1C1D1 – куб. Точки PNKQ принадлежат ребрам. Построить сечение куба плоскостью.
 Задание: На ребрах взяты точки K, L и M, как показано на рисунках. Постройте сечение куба плоскостью, проходящей через эти точки.
    
    Задание: На ребрах взяты точки K, L и M, как показано на рисунках. Постройте сечение куба плоскостью, проходящей через эти точки.