Основные логические операции Сапожникова Ольга Германовна – учитель информатики МОУ СОШ с УИОП г. Котельнича Кировской области
Cлайд 2
Кран В Кран А КОГДА ИЗ ТРУБЫ ПОЛЬЕТСЯ ВОДА? Открыт кран А Открыт кран В И
Cлайд 3
ЛОГИЧЕСКОЕ УМНОЖЕНИЕ «Сегодня светит солнце и идет дождь» А – «Сегодня светит солнце» В – «Сегодня идет дождь» Логическое умножение (конъюнкция) образуется соединением двух (или более) высказываний в одно с помощью союза «и».
Cлайд 4
ЛОГИЧЕСКОЕ УМНОЖЕНИЕ (КОНЪЮНКЦИЯ) Обозначение: &, ^, *. Союз в естественном языке: и. А ^ B – «Сегодня светит солнце и идет дождь» 0 0 0 1 Таблица истинности Конъюнкция двух высказываний истинна тогда и только тогда, когда оба высказывания истинны, и ложна, когда хотя бы одно из высказываний ложно. Ложь Ложь Ложь Истина А В А ^ B 0 1 1 0 0 0 1 1 Смысл высказываний А и В для указанных значений А ^ B Солнца нет Дождь идет Солнце светит Дождя нет Солнца нет Дождя нет Солнце светит Дождь идет
Cлайд 5
Кран А Кран В КОГДА ИЗ ТРУБЫ ПОЛЬЕТСЯ ВОДА? Открыт кран А Открыт кран В ИЛИ
Cлайд 6
ЛОГИЧЕСКОЕ СЛОЖЕНИЕ «На стоянка находятся «Мерседес» или «Жигули» А – На стоянке находится «Мерседес» В – На стоянке находится «Жигули» Логическое сложение (дизъюнкция) образуется соединением двух (или более) высказываний в одно с помощью союза «или».
Cлайд 7
ЛОГИЧЕСКОЕ СЛОЖЕНИЕ (ДИЗЪЮНКЦИЯ) Обозначение: +, V. Союз в естественном языке: или. А V B – На стоянке находится «Мерседес» или «Жигули» Дизъюнкция двух высказываний ложна тогда и только тогда, когда оба высказывания ложны, и истинна, когда хотя бы одно из высказываний истинно. 1 1 0 1 Истина Истина Ложь Истина Таблица истинности А В А V B 0 1 1 0 0 0 1 1 Смысл высказываний А и В для указанных значений А V B «Мерседеса» нет «Жигули» есть «Мерседес» есть «Жигулей» нет «Мерседеса» нет «Жигулей» нет «Мерседес» есть «Жигули» есть
Cлайд 8
ЗАПОМНИ!
Cлайд 9
ЛОГИЧЕСКОЕ ОТРИЦАНИЕ А – «Сегодня светит солнце» В – «Сегодня не светит солнце» Логическое отрицание (инверсия) образуется из высказывания с помощью добавления частицы «не» к сказуемому или использования оборота речи «неверно, что…». А – «У данного компьютера жидкокристаллический монитор» В – «Неверно, что у данного компьютера жидкокристаллический монитор»
Cлайд 10
ЛОГИЧЕСКОЕ ОТРИЦАНИЕ (ИНВЕРСИЯ) Истина Ложь Обозначение: ¬. Союз в естественном языке: не; неверно, что… А – «Сегодня светит солнце» ¬ А – «Неверно, что сегодня светит солнце» или «Сегодня не светит солнце» 1 0 Инверсия высказывания истинна, если высказывание ложно, и ложна, когда высказывание истинно. Таблица истинности Смысл высказывания А Значение высказывания: «Сегодня не светит солнце» Солнца нет Солнце есть А ¬ А 0 1
Cлайд 11
ЛОГИЧЕСКОЕ СЛЕДОВАНИЕ Обозначение: →. Союз в естественном языке: если…, то…. Если на улице, то асфальт мокрый. Если хорошо горит красный свет на светофоре, то стою и жду зеленый. Если прямо пойдешь, то коня потеряешь. Если коровы летают, то дважды два – пять. Логическое следование (импликация) образуется соединением двух высказываний в одно с помощью оборота речи «если…, то…».
Cлайд 12
1 0 1 1 Импликация двух высказываний ложна тогда и только тогда, когда из истинного высказывания следует ложное. Истина Ложь Истина Истина ЛОГИЧЕСКОЕ СЛЕДОВАНИЕ (ИМПЛИКАЦИЯ) А – «На улице дождь» В – «Асфальт мокрый» А → B – «Если на улице дождь, то асфальт мокрый» Таблица истинности А В А → B 0 1 1 0 0 0 1 1 Смысл высказываний А и В для указанных значений А → B Дождя нет Асфальт мокрый Дождь идет Асфальт сухой Дождя нет Асфальт сухой Дождь идет Асфальт мокрый
Cлайд 13
Обозначение: =, ↔, ~. Союз в естественном языке: тогда и только тогда, когда…. Число А – четное, тогда и только тогда, когда число А делится нацело на 2. Прямоугольник является квадратом тогда и только тогда, когда все его стороны равны. ЛОГИЧЕСКОЕ РАВЕНСТВО Логическое равенство (эквивалентность) образуется соединением двух высказываний в одно при помощи оборота речи «… тогда и только тогда, когда…».
Cлайд 14
ЛОГИЧЕСКОЕ РАВЕНСТВО (ЭКВИВАЛЕНТНОСТЬ) А – «Число А - четное» В – «Число А кратно 2» А ↔ B – «Число А – четное, тогда и только тогда, когда число А кратно 2» 0 0 1 1 Эквивалентность двух высказываний истинна тогда и только тогда, когда оба высказывания истинны или оба ложны. Ложь Ложь Истина Истина Таблица истинности А В А ↔ B 0 1 1 0 0 0 1 1 Смысл высказываний А и В для указанных значений А ↔ B Число нечетное Число кратно 2 Число четное Число не кратно 2 Число нечетное Число не кратно 2 Дождь идет Число кратно 2
Cлайд 15
КАКИЕ ЛОГИЧЕСКИЕ ОПЕРАЦИИ МОЖНО ПРОДЕМОНСТРИРОВАТЬ С ПОМОЩЬЮ СХЕМ? ПРОВЕРЬ СЕБЯ