Изобразите на координатной прямой промежуток (работаем в парах): 1) [-2;4] 2) (-3;3) 3) (3;+∞) 4) (-∞;4] 5) (-5;+∞) 6) (0;7] а) х≥2 в) х≤3 с) х>8 д) х
Cлайд 9
Линейные неравенства Определения: Запись вида а>в; а≥в или ав, а
Cлайд 10
Линейные неравенства Правила: 1) Любой член неравенства можно переносить из одной части неравенства в другую, изменив его знак на противоположный, при этом знак неравенства не изменится.
Cлайд 11
Линейные неравенства Правила: 2) Обе части неравенства можно умножить или разделить на одно и тоже положительное число, при этом знак неравенства не изменится.
Cлайд 12
Линейные неравенства Правила: 3) Обе части неравенства можно умножить или разделить на одно и тоже отрицательное число, при этом знак неравенства изменится на противоположный.
Cлайд 13
Решим неравенство: 16х>13х+45 Решение: 16х-13х > 45 слагаемое 13х с противоположным знаком перенесли в левую часть неравенства 3х > 45 привели подобные слагаемые х > 15 поделили обе части неравенства на 3 15 х Ответ: (15;+∞)
Решаем сами: Найдите наименьшее натуральное число, являющееся решением неравенства 3х-3 < х+4 Решение: 3х – х < 3+4 2х < 7 х < 3,5 0 3,5 х Ответ: 1
Cлайд 22
КВАДРАТНЫЕ НЕРАВЕНСТВА (8 класс)
Cлайд 23
Cлайд 24
Квадратные неравенства Определение: Квадратным называется неравенство, левая часть которого − квадратный трёхчлен, а правая часть равна нулю: ах²+bх+с>0 ах²+bх+с≥0 ах²+bх+с
Cлайд 25
Решением неравенства с одним неизвестным называется то значение неизвестного, при котором это неравенство обращается в верное числовое неравенство Решить неравенство − это значит найти все его решения или установить, что их нет.
Основные способы решения квадратных неравенств: Метод интервалов Графический метод
Cлайд 28
Запомним: Чтобы решить квадратное неравенство ах²+вх+с >0 методом интервалов надо: 1) Найти корни соответствующего квадратного уравнения ах²+вх+с = 0; 2) Корни уравнения нанести на числовую ось; 3) Разделить числовую ось на интервалы; 3) Определить знаки функции в каждом из интервалов; 4) Выбрать подходящие интервалы и записать ответ.
Cлайд 29
Решим квадратное неравенство методом интервалов: Дано неравенство: х² + х – 6 ≥ 0 Решение: 1) решим соответствующее квадратное уравнение х² + 5х – 6 = 0. Т.к. а+в+с=0, то х₁ =1, а х₂ = - 6 2) -6 1 х 3) Запишем ответ: (-∞; -6]U[1; +∞)
Графический метод решения квадратного неравенства: 1).Определить направление ветвей параболы, по знаку первого коэффициента квадратичной функции. 2).Найти корни соответствующего квадратного уравнения; 3). Построить эскиз графика и по нему определить промежутки, на которых квадратичная функция принимает положительные или отрицательные значения
Cлайд 33
Например: Решить графически неравенство х²+5х-6≤0 Решение: рассмотрим у = х²+5х-6, это квадратичная функция, графиком является парабола, т.к. а=1, то ветви направлены вверх. у + + -6 1 x Ответ: [-6;1]