Код презентации скопируйте его
Учитель 1 квалификационной категории Алейникова Л.В. МБОУ «Гатчинская средняя общеобразовательная школа №1»
1) уметь отмечать точки на числовой окружности; 2) уметь определять значения синуса, косинуса, тангенса и котангенса для координат точек числовой окружности; 3) знать свойства основных тригонометрических функций; 4) знать понятие арксинуса, арккосинуса, арктангенса, арккотангенса и уметь отмечать их на числовой окружности.
Частные случаи: а = 0 а = -1 а = 1 t = π k, t = π/2+ 2 π k, t = π/2 + 2πk, kєZ k є Z kє Z аrcsin (-а) = - аrcsin а t π /6 π /4 π /3 sint 1/2 √2 / 2 √3 / 2
Частные случаи: а = 0 а = -1 а = 1 t= π/2 + π k, t= π + 2 π k, t= 2 π k, k є Z k є Z k є Z аrcсos (-а) = π - аrcсos а t π /6 π /4 π /3 cost √3 / 2 √2 /2 1/2
Частные случаи: а = 0 а = -1 а = 1 t = πk, k є Z t = -π/4 + π k t = π/4 + π k аrctg (-а) = - аrctg а t π /6 π /4 π /3 tg t √3 / 3 1 √3
Частные случаи: а = 0 а = -1 а = 1 t = π/2 + π k, t = 3π/4+ πk, t= π/4+ πk , k є Z k є Z k є Z аrcсtg (-а) = π - аrcсtg а t π /6 π /4 π /3 ctgt √3 1 √3 / 3
ghb Применение формул корней Метод введения новой переменной V Метод разложения на множители