X

Код презентации скопируйте его

Ширина px

Вы можете изменить размер презентации, указав свою ширину плеера!

Понятие вероятности

Скачать эту презентацию

Презентация на тему Понятие вероятности

Скачать эту презентацию
Cлайд 1
Теория вероятностей, 9 класс. Теория вероятностей, 9 класс.
Cлайд 2
Статистическое определение вероятности Вероятность как предельное значение ча... Статистическое определение вероятности Вероятность как предельное значение частоты.
Cлайд 3
Самостоятельная работа Вариант 1 Вариант 2 Вариант 3 Вариант 4 1. На столе 12... Самостоятельная работа Вариант 1 Вариант 2 Вариант 3 Вариант 4 1. На столе 12 кусков пирога. В трех «счастливых» из них запечены призы. Какова вероятность взять «счастливый» кусок пирога? 1. В коробке 24 карандаша, из них 3 красного цвета. Из коробки наугад вынимается карандаш. Какова вероятность того, что он красный? В лотерее 100 билетов, из них 5 выигрышных. Какова вероятность выигрыша? В вазе 7 цветков, из них 3 розы. Из букета наугад вынимается цветок. Какова вероятность того, что это роза? 2. В урне 15 белых и 25 черных шаров. Из урны наугад выбирается один шар. Какова вероятность того, что он будет белым? 2. Из чисел от 1 до 25 наудачу выбрано число. Какова вероятность того, что оно окажется кратным 5? 2. В корзине лежат 5 яблок и 3 груши. Из корзины наугад вынимается один фрукт. Какова вероятность того, что это яблоко? 2. В корзине 10 яблок, из них 4 червивых. Какова вероятность того, что любое взятое наугад яблоко окажется не червивым?
Cлайд 4
Ошибка Даламбера. Великий французский философ и математик Даламбер вошел в ис... Ошибка Даламбера. Великий французский философ и математик Даламбер вошел в историю теории вероятностей со своей знаменитой ошибкой, суть которой в том, что он неверно определил равновозможность исходов в опыте всего с двумя монетами! Жан Лерон Даламбер (1717 -1783)
Cлайд 5
Ошибка Даламбера. Опыт. Подбрасываем две одинаковые монеты. Какова вероятност... Ошибка Даламбера. Опыт. Подбрасываем две одинаковые монеты. Какова вероятность того, что они упадут на одну и ту же сторону? Решение Даламбера: Опыт имеет три равновозможных исхода: 1) обе монеты упадут на «орла»; 2) обе монеты упадут на «решку»; 3) одна из монет упадет на «орла», другая на «решку». Из них благоприятными будут два исхода. Правильное решение: Опыт имеет четыре равновозможных исхода: 1) обе монеты упадут на «орла»; 2) обе монеты упадут на «решку»; 3) первая монета упадет на «орла», вторая на «решку»; 4) первая монета упадет на «решку», вторая на «орла». Из них благоприятными будут два исхода.
Cлайд 6
Опыт «Выбор перчаток». В коробке лежат 3 пары одинаковых перчаток. Из нее, не... Опыт «Выбор перчаток». В коробке лежат 3 пары одинаковых перчаток. Из нее, не глядя, вынимаются две перчатки. Перечислите все равновозможные исходы. Какой вариант решения правильный: Правило: природа различает все предметы, даже если внешне они для нас неотличимы. 1-ый вариант: 3 исхода: 1) «обе перчатки на левую руку», 2) «обе перчатки на правую руку», 3) «перчатки на разные руки». 2-ой вариант: 4 исхода: 1) «обе перчатки на левую руку», 2) «обе перчатки на правую руку», 3) «первая перчатка на левую руку, вторая на правую», 4) «первая перчатка на правую руку, вторая на левую».
Cлайд 7
Вывод: Формула классической вероятности дает очень простой способ вычисления ... Вывод: Формула классической вероятности дает очень простой способ вычисления вероятностей. Однако простота этой формулы обманчива. При ее использовании возникают два очень непростых вопроса: Как выбрать систему исходов опыта так, чтобы они были равновозможными, и можно ли это сделать вообще? Как найти числа т и п и убедиться в том, что они найдены верно?
Cлайд 8
Опыт человечества. Вероятность попасть под дождь в Лондоне гораздо выше, чем ... Опыт человечества. Вероятность попасть под дождь в Лондоне гораздо выше, чем в пустыне Сахара. Весь наш жизненный опыт подсказывает, что любое событие считается тем более вероятным, чем чаще оно происходит. Значит, вероятность должна быть каким-то образом связана с частотой.
Cлайд 9
Частота случайного события. Абсолютной частотой случайного события А в серии ... Частота случайного события. Абсолютной частотой случайного события А в серии из N случайных опытов называется число NA , которое показывает, сколько раз в этой серии произошло событие А.
Cлайд 10
Частота случайного события. Относительной частотой случайного события называю... Частота случайного события. Относительной частотой случайного события называют отношение числа появлений этого события к общему числу проведенных экспериментов: где А – случайное событие по отношению к некоторому испытанию, N раз проведено испытание и при этом событие А наступило в NA случаях.
Cлайд 11
Примеры Пример 1. Наблюдения показывают, что в среднем среди 1000 новорожденн... Примеры Пример 1. Наблюдения показывают, что в среднем среди 1000 новорожденных детей 515 мальчиков. Какова частота рождения мальчика в такой серии наблюдений? Ответ: 0,515
Cлайд 12
Примеры Пример 2. За лето на Черноморском побережье было 67 солнечных дней. К... Примеры Пример 2. За лето на Черноморском побережье было 67 солнечных дней. Какова частота солнечных дней на побережье за лето? Частота пасмурных дней? Ответ: 0,728; 0,272.
Cлайд 13
Примеры Пример 3. Отдел технического контроля обнаружил 5 бракованных изделий... Примеры Пример 3. Отдел технического контроля обнаружил 5 бракованных изделий в партии из 1000 изделий. Найдите частоту изготовления бракованных изделий. Ответ: 0,005
Cлайд 14
Примеры Пример 4. Для выяснения качества семян было отобрано и высеяно в лабо... Примеры Пример 4. Для выяснения качества семян было отобрано и высеяно в лабораторных условиях 1000 штук. 980 семян дали нормальные всходы. Найдите частоту нормального всхода семян. Ответ: 0,98
Cлайд 15
Фундаментальным свойством относительных частот является тот факт, что с увели... Фундаментальным свойством относительных частот является тот факт, что с увеличением числа опытов относительная частота случайного события постепенно стабилизируется и приближается к вполне определенному числу, которое и следует считать его вероятностью.
Cлайд 16
Проверка Пример 5. Подбрасывание монеты. А – выпадает герб. Классическая веро... Проверка Пример 5. Подбрасывание монеты. А – выпадает герб. Классическая вероятность: всего 2 исхода, 1 исход события А:
Cлайд 17
Проверка Пример 5. Французский естествоиспытатель Бюффон (XVIII в.) бросил мо... Проверка Пример 5. Французский естествоиспытатель Бюффон (XVIII в.) бросил монету 4040 раз, и при этом герб выпал в 2048 случаях. Следовательно, частота выпадения герба в данной серии испытаний равна: Жорж Бюффон
Cлайд 18
Проверка Пример 5. Английский математик Карл Пирсон (1857-1936) бросал монету... Проверка Пример 5. Английский математик Карл Пирсон (1857-1936) бросал монету 24000 раз, причем герб выпал 12012 раз. Следовательно, частота выпадения герба в данной серии испытаний равна: Карл Пирсон
Cлайд 19
Результаты Вывод Пример 5 подтверждает естественное предположение о том, что ... Результаты Вывод Пример 5 подтверждает естественное предположение о том, что вероятность выпадения герба при одном бросании монеты равна 0,5.
Cлайд 20
Статистическая вероятность Вероятность случайного события приближенно равна ч... Статистическая вероятность Вероятность случайного события приближенно равна частоте этого события, полученной при проведении большого числа случайных экспериментов: , где - число испытаний, в которых наступило событие А, N – общее число испытаний.
Cлайд 21
Задача №1. Чтобы определить, как часто встречаются в лесопарке деревья разных... Задача №1. Чтобы определить, как часто встречаются в лесопарке деревья разных пород, ребята провели следующие эксперименты. Каждый выбрал свою тропинку и по пути следования записывал породу каждого десятого дерева. Результаты были занесены в таблицу: Породы Сосна Дуб Береза Ель Осина Всего Число деревьев 315 217 123 67 35 757 Оцените вероятность того, что выбранное наугад в этом парке дерево будет: а) сосной; б) хвойным; в) лиственным. Указание. Ответ запишите в виде десятичной дроби с тремя знаками после запятой.
Cлайд 22
Задача №1. Решение: а) A={выбранное наугад в парке дерево - сосна} NА = 315, ... Задача №1. Решение: а) A={выбранное наугад в парке дерево - сосна} NА = 315, N = 757, Р(А) = 315/757 0,416; б) В ={выбранное наугад в парке дерево - хвойное} NА = 315 + 67 = 382, N = 757. Р(А) = 382/757 0,505; в) C = {выбранное наугад в парке дерево - лиственное} NА = 217 + 123 + 35 = 375, N = 757. Р(А) = 375/757 0,495.
Cлайд 23
По статистике, на каждые 1000 лампочек приходится 3 бракованные. Какова вероя... По статистике, на каждые 1000 лампочек приходится 3 бракованные. Какова вероятность купить исправную лампочку? Решение: 3/1000 = 0,003 1 – 0,003 = 0,997 Задача №2.
Cлайд 24
Демографы утверждают, что вероятность рождения близнецов равна 0,012. в сколь... Демографы утверждают, что вероятность рождения близнецов равна 0,012. в скольких случаях из 10 000 рождений можно ожидать появление близнецов? Решение: Ответ: в 120 случаях. Задача №3.
Cлайд 25
Домашнее задание. Задача №1. По статистике в городе Новинске за год из каждой... Домашнее задание. Задача №1. По статистике в городе Новинске за год из каждой 1000 автомобилистов два попадают в аварию. Какова вероятность того, что автомобилист в этом городе весь год проездит без аварий? Задача №2. Чтобы определить, какой цвет волос встречается в городе чаще, а какой реже, студенты за полчаса провели следующий эксперимент. Каждый выбрал свой маршрут и записывал по пути следования цвет волос каждого пятого встречного. Результаты были занесены в следующую таблицу: Цвет волос Брюнеты Шатены Рыжие Блондины Всего Число людей 198 372 83 212 865 Оцените вероятность того, что выбранный наугад житель этого города будет: а) шатеном; б) рыжим; в) не рыжим.
Скачать эту презентацию
Наверх