X

Код презентации скопируйте его

Ширина px

Вы можете изменить размер презентации, указав свою ширину плеера!

Энергетика и экология

Скачать эту презентацию

Презентация на тему Энергетика и экология

Скачать эту презентацию

Cлайд 1
Энергетика и экология Энергетика и экология
Cлайд 2
Тепловые элекстростанции ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ (ТЭС), электростанция, выраб... Тепловые элекстростанции ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭС появились в кон. 19 в (в Нью-Йорке, Санкт-Петербурге, Берлине) и получили преимущественное распространение. В сер. 70-х гг. 20 в. ТЭС - основной вид электрической станции.
Cлайд 3
Cлайд 4
Среди ТЭС преобладают тепловые паротурбинные электростанции (ТПЭС), на которы... Среди ТЭС преобладают тепловые паротурбинные электростанции (ТПЭС), на которых тепловая энергия используется в парогенераторе для получения водяного пара высокого давления, приводящего во вращение ротор паровой турбины, соединённый с ротором электрического генератора (обычно синхронного генератора).
Cлайд 5
ТПЭС, имеющие конденсационные турбины и не использующие тепло отработавшего п... ТПЭС, имеющие конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называют конденсационными электростанциями (Государственная районная электрическая станция, или ГРЭС). ТЭС с приводом электрогенератора от газовой турбины называют газотурбинными электростанциями (ГТЭС)
Cлайд 6
Cлайд 7
ГИДРОЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ ГИДРОЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ
Cлайд 8
Гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством ко... Гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения которая, в свою очередь, преобразуется в электрическую энергию. По максимально используемому напо ру ГЭС делятся на высоконапорные (более 60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м).
Cлайд 9
Принцип работы Принцип работы ГЭС достаточно прост. Цепь гидротехнических соо... Принцип работы Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию. Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию. Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля за работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.
Cлайд 10
Cлайд 11
Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощнос... Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности: мощные — вырабатывают от 25 МВТ до 250 МВт и выше; средние — до 25 МВт; малые гидроэлектростанции — до 5 МВт.
Cлайд 12
Крупнейшие гидроэлектростанции России Саяно-Шушенская ГЭС, Красноярская ГЭС, ... Крупнейшие гидроэлектростанции России Саяно-Шушенская ГЭС, Красноярская ГЭС, Братская ГЭС, Усть-Илимская ГЭС
Cлайд 13
Атомные электростанции Атомная электростанция(АЭС), электростанция, в которой... Атомные электростанции Атомная электростанция(АЭС), электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор. Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем .
Cлайд 14
Cлайд 15
Принцип действия Принцип действия
Cлайд 16
Достоинства и недостатки Достоинства атомных станций: Небольшой объём использ... Достоинства и недостатки Достоинства атомных станций: Небольшой объём используемого топлива и возможность его повторного использования после переработки. Высокая мощность Низкая себестоимость энергии, особенно тепловой. Возможность размещения в регионах, расположенных вдали от крупных водноэнергетических ресурсов, крупных месторождений угля, в местах, где ограничены возможности для использования солнечной или ветряной электроэнергетики. При работе АЭС в атмосферу выбрасывается некоторое количество ионизированного газа, однако обычная тепловая электростанция вместе с дымом выводит еще бо льшее количество радиационных выбросов, из-за естественного содержания радиоактивных элементов в каменном угле. Недостатки атомных станций: Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению; С точки зрения статистики и страхования крупные аварии крайне маловероятны, однако последствия такого инцидента крайне тяжёлые; Большие капитальные вложения, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.
Cлайд 17
Нетрадиционные источники электроэнергии Каковы же эти нетрадиционные и возобн... Нетрадиционные источники электроэнергии Каковы же эти нетрадиционные и возобновляемые источники энергии? К ним обычно относят солнечную, ветровую и геотермальную энергию, энергию морских приливов и волн,  биомассы (растения, различные виды органических отходов), низкопотенциальную энергию окружающей среды, также принято относить малые ГЭС, которые отличаются от традиционных - более крупных - ГЭС только масштабом.
Cлайд 18
Поле зеркал-гелиостатов Крымской солнечной электростанции Солнечная электрост... Поле зеркал-гелиостатов Крымской солнечной электростанции Солнечная электростанция — инженерное сооружение, служащее преобразованию солнечной радиации в электрическую энергию. Способы преобразования солнечной радиации различны и зависят от конструкции электростанции.
Cлайд 19
Ветровая электростанция Ветроэнергетика — отрасль энергетики, специализирующа... Ветровая электростанция Ветроэнергетика — отрасль энергетики, специализирующаяся на использовании энергии ветра — кинетической энергии воздушных масс в атмосфере. Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности солнца. Ветроэнергетика является бурно развивающейся отраслью
Cлайд 20
Геотермальные элекстростанции Геотерма льная электроста нция (ГеоТЭС) — вид э... Геотермальные элекстростанции Геотерма льная электроста нция (ГеоТЭС) — вид электростанций, которые вырабатывают электрическую энергию из тепловой энергии подземных источников (например, гейзеров).
Cлайд 21
Приливная электростанция Прили вная электроста нция (ПЭС) — особый вид гидроэ... Приливная электростанция Прили вная электроста нция (ПЭС) — особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды.
Cлайд 22
Энергия биомассы Биомасса — пятый по производительности возобновимый источник... Энергия биомассы Биомасса — пятый по производительности возобновимый источник энергии после прямой солнечной, ветровой, гидро и геотермальной энергии. Ежегодно на земле образуется около 170 млрд т. первичной биологической массы и приблизительно тот же объём разрушается. Биомасса применяется для производства тепла, электроэнергии, биотоплива, биогаза (метана, водорода).
Cлайд 23
Плюсы и минусы нетрадиционных возобновляемых источниках энергии Указанные ист... Плюсы и минусы нетрадиционных возобновляемых источниках энергии Указанные источники энергии имеют как положительные, так и отрицательные свойства. К положительным относятся повсеместная распространенность большинства их видов, экологическая чистота. Эксплуатационные затраты по использованию нетрадиционных источников не содержат топливной составляющей, так как энергия этих источников как бы бесплатная. Отрицательные качества - это малая плотность потока (удельная мощность) и изменчивость во времени большинства НВИЭ. Первое обстоятельство заставляет создавать большие площади энергоустановок, «перехватывающие» поток используемой энергии (приемные поверхности солнечных установок, площадь ветроколеса, протяженные плотины приливных электростанций и т.п.). Это приводит к большой материалоемкости подобных устройств, а, следовательно, к увеличению удельных капиталовложений по сравнению с традиционными энергоустановками. Правда, повышенные капиталовложения впоследствии окупаются за счет низких эксплуатационных затрат.
Cлайд 24
Термоядерная электростанция В настоящее время ученые работают над созданием а... Термоядерная электростанция В настоящее время ученые работают над созданием а Термоядерной электростанции, преимуществом которых является обеспечение человечества электроэнергией на неограниченное время. Термоядерная электростанция работает на основе термоядерного синтеза — реакции синтеза тяжелых изотопов водорода с образованием гелия и выделением энергии. Реакция термоядерного синтеза не дает газообразных и жидких радиоактивных отходов, не нарабатывает плутоний, который используется для производства ядерного оружия. Если еще учесть, что горючим для термоядерных станций будет тяжелый изотоп водорода дейтерий, который получают из простой воды — в полулитре воды заключена энергия синтеза, эквивалентная той, что получится при сжигании бочки бензина, — то преимущества электростанций, основанных на термоядерной реакции, становятся очевидными.
Cлайд 25
Интернациональный термоядерный реактор Интернациональный термоядерный реактор
Скачать эту презентацию
Наверх